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PREFACE.

N this volume I have endeavoured to give a sketch of the
theory of the working of alternating apparatus in the hope
that it will prove helpful to engineers, teachers and advanced
students. In addition to the more elementary parts of the theory,
n introduction is given to several of the more difficult problems
which arise in practical work.
The questions of armature reaction, of phase swinging and of
free and forced oscillations, of the magnetic effects produced by
various types of windings, etc., have often been discussed at the
meetings of technical societies in this and other countries. In
some of the papers which are published in the proceedings of
ghese societies, theorems are quoted from books or journals which
are not readily accessible, and in others an advanced theoretical
knowledge is assumed. It was thought, therefore, that an intro-
duetion to the theory would prove useful to many.
Formulae obtained from admittedly imperfect theory are often
used in the practical design of electrical machinery, and it is of
great importance to know their limitations. The utility of many
of the theorems given below has been amply proved by modifi-
cations of the design of several well-known types of apparatus.
I have to thank many engineers for their kind permission to
make use of their papers or for furnishing me with experimental
data. In particular I wish to thank the Maschinenfabrik Oerlikon.
In the first two chapters the theory of single and polyphase
alternators is set forth. Great credit is due to Mr J. Swinburne

for his early recognition of the importance of armature reaction
; a3l
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vi PREFACE

in the working of these machines. Many of the phenomena which
puzzled the early electricians are easily explained when this is
taken into account. For the proofs of the formulae for armature
reaction given in Chapters I and Xnr I am indebted to Professor
C. F. Guilbert. I am also deeply indebted to Professor André

Blondel for the instructive oscillograms illustrating the working |

of two and three phase machines given in Chapter II

The experimental methods of analysing E.M.F. waves given in
Chapter 111, particularly that due to Mr H. Armagnat, are useful
in practice. The theory of synchronous motors developed in
Chapters 1v and Vv is an easy application of the methods used
by J. Hopkinson. It is shown how the V-curves, first described
by Mr W. M. Mordey, could have been predicted easily by
elementary theory. The development of his father’s theory by
Professor B. Hopkinson given in Chapter vI is particularly
interesting, and the theoretical method used will be found helpful
in many allied problems.

The question of the cause of the fracture of shafts, coupling

engines and alternators has been briefly discussed and a simple
explanation, due to Dr C, Chree, of the whirling of shafts is also
given,

The theory of the alternating current transformer is set forth
at length, as it is in excellent accord with experiment. In this
connection I have to acknowledge my indebtedness to Professor
J. A. Fleming. The theory of the induction motor is developed
on the lines laid down by A. Potier. In writing Chapter XIv,
describing the effects of harmonics in the E. M. F. and flux waves
on the working of induction motors, I have received great help
from papers by Mr E. Noaillon and Mr M. B. Field. The theory
of the commutator motor, enunciated in Chapter XV, is practically
that used by many French engineers.

To Mr de Marchena, the engineer to the Campagnie frangaise

Thomson-Houston, 1 am particularly indebted for some of the |
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theorems and experimental data given on rotary converters. In
the slight sketch of the theory of the electric transmission of
power given in Chapter xvIiI I have elaborated a theorem due
to Professor J. Perry, and I am also under obligations to Mr Oliver
Heaviside.

Considerations of space have compelled me to omit many
problems of theoretical interest and practical importance. The
student, however, by studying the analogous problems set forth
in this volume will find that it is not difficult to make a practical
working theory for himself. For instance a practical solution of
the problem of the stability of the motion of three alternators
coupled in series—a method of getting three phase currents
which has been proposed by Mr C. P. Steinmetz—can easily be
found by a slight extension of J. Hopkinson’s method. -

In conclusion I have to thank several friends who have
assisted me in revising the proofs or by making suggestions.
My best thanks are due to Dr C. Chree, F.R.S,, for discussing
with me several of the problems contained in this work and
for revising many of the proof sheets. I am also deeply indebted
to Mr F. J. Dykes, Fellow of Trinity College, Cambridge, and
lately Professor of Electro-technics at the Royal Naval Schools,
Portsmouth, for reading all the slip proofs, and to Mr Clifford
Paterson, A.M.I.C.E,, late of the Oerlikon Works and now of the
National Physical Laboratory, for reading several of the earlier
chapters. I have again the pleasure of thanking Mr W, C. D.

Whetham, F.R.S, for the care with which he has edited this
work.

. A R
2, BELLEVUE PrACE,
RicaMoND, SURREY.
October, 19086.
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SYMBOLS

primary star currents.
secondary star currents.

k, form factor; capacity between the mains per unit length.
k,,, form factor for mesh voltage.
k,, form factor for star voltage.
1, self inductance per unit length.
m, mass; & constant.
n, number of turns; a constant.
p, half the number of poles.
g, number of phases.
r, resistance; resistance per unit length.
ry, resistance of the secondary coil of a transformer.
79y 79, 757, resistances of the secondary coils of a three phase transformer.
s, insulation resistance per unit length; slip.
t, time in seconds.
v, potential difference; velocity; 1/./1k; 3 x 10 cms. per sec.

’ ”
Rt Uy (4
’ ”
Vs Vg Vg

primary mesh voltages.
secondary mesh voltages.

a, 8, numbers.
a, B, v, 8, angles.
v, 6, ¥, phase differences.
€, base of Neperian logarithms.
7, Steinmetz’s coefficient; efficiency.
A, dielectric coefficient.
u, magnetic permeability; rigidity.
m, 3-14159....
p, resistivity; density.
o, resistivity of insulating material ; leakage factor=1-M?/L,L,.
7, time constant.
¢, instantaneous value of flux.
w, angular velocity ; 2 x frequency of supply.
T'(n), the gamma function of n.
3, the symbol for summation.
®, maximum value of the flux when it follows the sine law.
P, maximum value of the flux.
$,, flux of induction from a pole entering the armature.
$,, leakage flux.
Q, 2 xfrequency of supply.
&, mean magnetising force in ampere turns.
._%, mean transverse magnetising force.
47®/10, reluctance.
47®,/10, leakage reluctance.
47®Ry/10, reluctance of field magnets.
47®,/10, air-gap reluctance.
aN;4 siny, the demagnetising turns per pole due to the armature current.
BNy4 cos y, the transverse magnetising turns per pole due to the armature

current, .
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CHAPTER 1L

B Dynamo electric machines. Stator and rotor. Various types of single
phase alternators. Frequency. Armature with bar winding. Single
coil winding. Disk armatures. Inductor machines. Distribution of
magnetic flux. Effect of the armature currents on the field. Open
circuit electromotive force formulae. Effect of the breadth of the
armature coils. Open circuit characteristic. Flux curves. Short cir-
cuit characteristic. Wave windings. Lap windings. Principle of two
reactions. Formula for the demagnetising effect of the lagging com-
ponent of the current. Formula for the compensating ampere turns
required for the field magnets. The compensating ampere turns required
to keep the flux in the field magnets constant. Transverse magnetisation
of the field. Numerical example. Load characteristics. The electro-
motive forces in the armature. Working diagram. Equation to the.
short circuit characteristic. Characteristic curves on wattless loads.

€ General equation to load characteristics. The regulation of alternators.

Theoretical characteristics. Alternating component of the exciting

current. References.

~ WHEN a moving wire cuts lines of magnetic induction, an

R electromotive force is generated in it. If the wire
electric form part of a closed circuit, a current will flow in the
i circuit, and, as Lenz pointed out, the current will pro-
duce electromagnetic forces tending to stop the motion. Hence,
to overcome this resistance to the motion, mechanical work must
be expended on the wire, and this work, by the Conservation of
Energy, will be the equivalent of the electrical work generated.
This method of converting mechanical energy into electrical
energy is the method utilised in dynamo electric machines. In
~ a direct current dynamo, the current always flows in the same
direction round the external circuit, but, in an alternating current
dynamo, the direction of the flow of the current in the external

ﬂ' R. II. 1
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2 ALTERNATING CURRENT THEORY [cH.

circuit is continually reversed. In a direct current machine,
however, the current induced in an armature coil is flowing in one
direction when it is moving past a north pole and in the other
direction when it is flowing past a south pole. Hence the current
in the coil must be reversed in some intermediate position. In the
process of reversal the coil is first short circuited by one of the
brushes which press on the commutator. The currents flowing in
the armature coils of a direct current machine are thus really
alternating currents, the frequency of which equals the product of
half the number of poles multiplied by the number of revolutions
of the armature per second.

In an alternating current dynamo, or as it is generally called,
an alternator, the coils of the armature are connected in such a
way that the electromotive forces generated in them are all acting
in the same direction at any instant, the direction of the resultant
electromotive force altering every time a coil passes a pole. If the
electromagnets which produce the field rotate, the ends of the
armature winding are connected directly with the terminals of the
machine, the rotation of the exciting magnetic field maintaining
an alternating potential difference between these terminals. If
the armature rotates and the field magnets are stationary, then
the ends of the armature winding are connected with metal rings
fixed on the shaft, but insulated from it, on which press copper
or carbon brushes connected with the terminals of the machine.
These rings are called slip rings or collector rings.

One advantage that direct current machines have over alter-
nators is that they are self-exciting. After the magnets have
once been excited, their residual magnetism is sufficient to produce
a weak field in the air-gap. If the dynamo is shunt wound, the
field magnet windings are in parallel with the external load but in
series with the armature winding. When the armature rotates,
either on open or closed circuit, the low E.M.F. generated in it by
the residual field will send a small current round the field magnet
windings. This current excites the field magnets and increases
the induction in the air-gap. Both the EM.¥. and the current,
therefore, will go on increasing until the EM.F. generated in the
armature conductors only suffices to produce the maguetising
current required to maintain the magnetic field giving that EM.F.




1] STATOR AND ROTOR L)

In a series dynamo, the field magnet windings and the armature
windings are connected in series between the terminals of the
machine, and thus, on open circuit, no current will flow in the
field magnet windings and the potential difference between the
terminals will be due merely to the residual field. When, how-
ever, the terminals are connected through an outside load, a
current will flow, and the magnetic field and the electromotive
force generated will both increase until equilibrium is attained
in the same way as in a shunt machine.

In almost every type of alternator, on the other hand, we
require a small direct current dynamo to provide the current
required to excite the -field magnets. This dynamo, which is
called the exciter, is generally mounted on the shaft of the
alternator. The exciters of modern alternators are shunt wound.
The voltage of the exciter, and therefore the strength of the
alternator’s field, can be regulated by varying the resistance of a
rheostat in the shunt circuit of the exciter. In central stations, a
battery of storage cells is often used in addition to the dynamo,
thus reducing to a minimum the risk of a break-down in the

exciting circuit.

In an alternator either the field magnets or the armature may

rotate. It is convenient to refer to the rotating

e e part of a machine as the rotor, and to the stationary
part as the stator.

If the armature coils are connected in series, and if ¢,, ¢,, ...
be the instantaneous values of the fluxes linked with them and the
coils have &,, NV, ... turns of wire respectively, the electromotive
force e generated at any instant is given by

3=Nl%+N2%+

The magnetic flux through a coil can be altered mechanically
: in several ways, and we can classify alternating
- Various types A e
of single phase current generators according to the method utilised
alternators. -
for varying the flux. The first class of alternator
comprises those which have rotating armatures and fixed field
magnets. In the second class, the armatures are fixed and the
1—2



4 ALTERNATING CURRENT THEORY [cn.

field magnets rotate; and in the third, both the field magnets
and the armature are fixed. The types of alternator belonging to
the second class are those most commonly employed in practice.
Since the armatures are stationary, they can easily be wound for
high pressures. The large moment of inertia of the revolving
field magnets promotes steady running by diminishing’ the effect
on the speed of any irregularities in the driving torque. In this
respect its action is similar to that of a flywheel. In the first two
types of alternator the poles of the field magnets are evenly
distributed round the circumference of the stator or rotor, and
adjacent poles are of opposite polarity. The field magnet coils are
often formed by a single layer of copper strip wound edgewise
round the field magnet, and insulated by a fibrous material
between the turns. The exterior surface of the windings is
merely protected by an insulating varnish which allows the heat
generated in the field coils to be radiated away rapidly. In order
to avoid appreciable losses due to eddy currents, the armature is
built up of thoroughly annealed soft iron or steel plates, which are
generally insulated from each other either by means of thin paper
pasted on one side of each plate or by a suitable varnish. The
polar ¢ pieces’ or ‘shoes’ which form the poles of the field magnets
are also built up of thin plates of iron or steel.

If the rotor of an alternator be made to revolve, the value of
the magnetic flux embraced by an armature coil
continually alters. When the armature rotates, the
magnetic flux embraced by a coil on it goes through all its cyclical
values in the time the coil takes to pass two adjacent poles, and
when the poles rotate, the period of the varying flux is the time
taken by two adjacent poles to pass the coil. Hence, the frequency
is independent of the armature windings and depends only on the
number of field poles and the number of revolutions per minute
of the rotor. If 2p be the number of poles, so that p is the
number of pairs of poles, and if IV be the number of revolutions of
the rotor per minute, then the frequency f is given by

Frequency.

_pN
f—60'

In both the first and the second type of alternator, the magnetic







6 ALTERNATING CURRENT THEORY [CH.

the electromotive forces generated in neighbouring bars, as the’
armature rotates, are of opposite sign, we shall have all the E.M.F.s
generated acting in the same direction if we connect the ends of
the bars alternately as in the figure. The ends of the circuit are
connected to two slip rings S, and S,, and so an alternating
potential difference is maintained at the terminals of the machine,
which are in electrical connection with brushes pressing on the
rings.

In Fig. 1 we may suppose that the field magnets revolve. In
this case the direct current required for the excitation of the field
magnets would be collected by slip rings, and the windings of the
armature would be connected to fixed terminals.

In the single coil winding shown in Fig. 2, the coils are
Bnciskioh connected in series, and as their EM.F.s are all in
yealng, phase with one another, the terminal voltage of the
machine is the sum of all the EM.F.s generated in the coils. Since
the voltage is proportional to the number of turns in each coil,
the machine illustrated in Fig. 2 can easily be constructed to
give a much higher voltage than that shown in Fig. 1.

In both the above machines we have iron in the armature.
Most of the magnetic lines common to two adjacent poles complete
their paths through the iron cylinder on which the copper con-
ductors are placed. There will be two air-gaps in the path of the
lines of force, one immediately under each pole. The lines of force
where they leave the polar faces are pointing approximately in the
radial direction, that is, to the axis of the shaft, and the conductors
cutting them are parallel to this axis.

An alternative form of construction is to have the armature
Disk conductors pointing radially and the lines of force
armatures.  parallel to the axis of the shaft. This kind of arma-
ture is called a disk armature, and iron need not be used in its
construction. The armature windings, shown in Figs. 1 and 2,
illustrate also the ‘wave’ and ‘coil > windings respectively for disk
armatures, The conductors are of copper strip and are wound on
non-magnetic frames, generally of laminated brass. Consecutive
turns of the copper strip in a coil winding are insulated from one




——

1] SINGLE COIL WINDING 7

another by some suitable material. All the coils are bolted
together and are mounted on the circumference of the armature
wheel so that the axes of the coils are at right angles to the plane
of the wheel. The field frame supports two rings of magnetic

_ poles facing one another. The axis of each pole is parallel to the

shaft, and the poles facing one another are of opposite polarities,
and so also are the poles adjacent to one another on the same

Fig. 2. Twenty pole alternator with single coil winding.

ring. If N, and S, be two adjacent poles on the first ring, and
Sy and N, be the two opposite poles on the second ring, then,
neglecting leakage, half the flux leaving N, crosses the air-gap
and goes through S,. From 8, it goes through part of the second
ring to N, and crosses the air-gap to S, and finally it returns,
through part of the first ring, to &,. There will thus be two
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air-gaps in the path of the flux. The other half of the flux
leaving N, has a similar path on the side of &, remote from S,.
The size of the air-gaps is only sufficient to allow the armature
coils to rotate safely. As adjacent fields are of opposite polarities
we get alternating electromotive forces set up in the armature
coils, which may be connected with one another as in Fig. 2. It
is customary, in practice, to place another set of coils between
those indicated in Fig. 2 and exactly similar to them. The two
sets of coils are generally connected in parallel.

In constructing this type of alternator it is difficult to make
the armature of sufficient mechanical strength to withstand the
appreciable mechanical stresses to which it is subjected when
running. None of the insulating materials employed in practice,
such as micanite, fibre, slate, ebonite, stabilit, presspahn, ete., have
any great mechanical strength.

Machines belonging to the third class are called inductor
i machines. In the commonest type of this class the
machines.  yotor consists of a wheel carrying on its rim blocks of
laminated iron which, in certain positions, make the reluctance of
the magnetic circuit, common to the field and the armature, ex-
ceedingly small. If ® be the induced flux, and nC the exciting
ampere-turns round a magnetic circuit, then (Vol. I, p. 51) we have

_ 4mnC/10
" Reluctance

Hence, if we vary the reluctance, C' remaining constant, ® will
vary, and therefore an EM.F. will be set up in any coil embracing
this magnetic circuit. In some inductor machines, the armature
coils and the exciting coils are wound on the same polar projections.
In this case the flux merely undulates between a maximum and a
minimum value. In actual machines of the undulating type the
ratio of the maximum to the minimum flux varies between three
and ten.

In other inductor machines the flux periodically reverses in
direction. To see how this is done consider the diagrams 3, 4,
and 5.

The polar projections N and S (Fig. 3) are excited by direct
currents flowing in coils wound round them. A represents a polar

|






10 ALTERNATING CURRENT THEORY [CH.

on the circumference of the rotor are marked M. In Fig. 3, the
flux is leaving M and entering A, whilst in Fig. 5 the flux has been
completely reversed. In some intermediate position (Fig. 4) the
algebraical sum of the fluxes entering 4 must be zero. We see
that, when M advances over the step between the centres of two
polar projections, the alternating current has gone through half
of its values. Hence, the frequency of the alternating current is
pN/60 where 2p is the number of polar projections on the circum-
ference of the stator, and N is the number of revolutions of the
rotor per minute. As the flux in the field magnets of inductor
machines is continually varying, an alternating current will be
superposed on the direct current exciting the magnets. '

Before we can find a formula for the electromotive force
Distribation  S€Derated by an alternator we must make some
ol upupehc supposition as to the distribution of the magnetic

’ flux in the air-gap. Unfortunately, this distribution
varies in a complicated manner in practice owing to the slots in
the armature, the different ratios of the distance between the

\/
\\/‘\\‘
\ /mmmmlgux\ ,//u,ummuun\\7

Fig. 6. Lines of force in the air-gap of an alternator.

poles to the polar breadth, etc. If we suppose that the poles are
rectangular and that the distance between them is approximately
ten times the air-gap, then the distribution of the magnetic flux
would be approximately as shown in Fig. 6. The lines of magnetic

—————— T
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!

~ induction in more complicated cases can be found by drawing the
~ lines of flow between copper electrodes of suitable shape placed on

a sheet of tinfoil and maintained at a constant potential (see

' Chapter 1). We could also find in this manner the lines of
" magnetic induction in the neighbourhood of a slot (Fig. 7). It is

Fig. 7. Lines of force in the neighbourhood of a slot.

important to note that very few lines penetrate far into the slot,
hence, unless it be very shallow, its depth has very little effect on
the distribution of the magnetic lines in the air-gap.

When currents flow in the armature of an alternator, they may
distort the magnetic field very considerably. Later

Effect of the  on in this chapter we shall find formulae for the
RpEgecs o0 demagnetising and cross magnetising forces produced
by these currents. At present we shall consider the

problem from an elementary point of view. Suppose that a wire
carrying a current is placed parallel to an infinite plate of iron

(Fig. 8). - The magnetic field produced is similar to that shown in
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the figure. It will be seen that many of the lines of force in the
air meet the iron and complete the rest of their circuit round the
wire as lines of induction in the iron. The shape of the lines of
force shows that the wire will be attracted towards the iron. {

In Fig. 9 are shown the lines of induction round a wire
embedded in an iron plate and parallel to its surface. The plate
is supposed to be very thick compared with the depth of the

/ a5
\_/

\ y

Fig. 8. Lines of force round a current flowing perpendicularly to the plane of
the diagram and parallel to a slab of iron (u=9).

embedded wire. It is to be noticed that the lines of force are
nearly perpendicular to the surface of the iron. Both the above
diagrams, which are due to G. F. C. Searle, illustrate what is
called the refraction of lines of force on entering iron. Searle has
pointed out one most important advantage gained by leading
the wire through a tunnel in the armature instead of placing it
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on the surface, namely, that the mechanical force experienced by
the wire in this case is much less than it would be if it were on

S

e

=

Fig. 9. Lines of magnetic induction round a wire carrying a current and
embedded in an iron plate. The wire is supposed to be perpendicular to the
plane of the paper and parallel to the surface of the iron (u=9).

the surface of the armature, although the torque required to drive
the armature and the electromotive force developed in its windings
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are practically the same in the two cases. The iron experiences all
the force that would otherwise come on the conductors. The same
advantage applies in a slightly diminished degree when we have
slots on the surface of the armature instead of tunnels through its
substance. In this case, any tendency to slip is at once checked
mechanically by the sides of the slots.

Suppose that the breadth of the polar pitech, that is, the
oAt Tt distance from the centre of one pole to the centre
pen circuit & 4 3
electromotive  of the next measured along a circle which has its

force formulae. . " . .
centre in the axis of rotation, is @, and suppose that
b is the breadth of the pole. If we suppose, in addition, that the

Y

Fig. 10. Induction wave in the air-gap.

induction density is constant over the polar face, the density of
the magnetic flux in the air-gap will be given approximately by
the ordinates of the curve shown in Fig. 10.
The equations to give the magnetic flux at any point in the
air-gap are ;
y=(a2_xb)nh from 2 =0 to z=1% (e — b)
= fromz=%(a—0) tox=%(a+b)} ...(a)
2(a—2)

Y= {——&——T} hfrome=%(a+b)tor=a

If n be unity, the curves in Fig. 10 become straight lines.
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If n be less than unity, the curves are concave to the axis of z,
and if n be greater than unity, they are similar to the curves
shown in the figure. In the particular case, when n is zero, we
get a rectangle for the curve of flux. When = is infinite, the
density is constant directly under the poles and zero elsewhere.
"We can thus get important practical cases by giving various
values to n.

Let # be the distance of a conductor, measured along the
. circumference of the rotating armature, from a fixed point O in
the air-gap. We suppose that O is infinitely near to the surface
of the armature, and that at all points on a line through O parallel
to the shaft and parallel, therefore, to the conductors on the
- armature surface, the induction density is zero.
Let the density y of the field at « be as shown in Fig. 10, then,
'~ the electromotive force e generated in the conductor is given by

~ (see Vol. I, p. 26)

e=ly (fi—': SRIORERY OIS, 3o . Mt w1 (B),

where [ is the active length of the conductor in centimetres and

- g—f is its velocity in centimetres per second. If the armature is

rotating with constant angular velocity, %

the shape of the EMLF. wave in a simple bar winding will be the
same as the shape of the wave of flux in the air-gap.
If T be the period of the electromotive force generated, we get,
from (B), by integration
T

2 a
f edt = lf yda x 1078
0 0
=D, %1078

is constant, and hence

where @4 is the flux of induction which enters the armature from
one pole,

T
2

Now f edt=gem
0 2

_V e
=9V
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where V is the effective voltage, e, the mean value of ¢, and f the
frequency of the alternating E.M.F. Hence, if there are N bars
joined in series on the armature, as in a simple bar winding
(Fig. 1), we have

V= 3fN’ 5 ~ @, x 107

V/en is called the form factor of the wave. We shall denote"
it by %, so that
V=2fNkd,x 10
If we have IV turns of wire in series, as in Fig. 2, then
V=4fNk®d, x 107,
since each turn of wire has two active bars in series. i
The above formulae show that it is not sufficient to know the
total flux entering the armature from a pole and the number of
windings on the armature in order to determine the effective
electromotive force. We must know, in addition, how the flux
is distributed. '

) )
Let us suppose that the distribution of the flux is represented
by the curve shown in Fig. 10; then by the equation (B) given
above, we have i
VW
— =Fk, :
em Ym |
where Y is the effective value of .
Now, from the equations («)
a—b
(2= e
aym—fo (a—b) hdx+bh+fa+b{ - } hdz,
and therefore i = s nb h.
a+na
g a—b\
.Agaln O E=12 (-—-2——') ml + bR,
N 2
Therefore Y:= a@ntl) he,
a + 2nb
< e \/ PTOFE L
Rk k=_=a(n+1) a + 2nb

Ym  @+nb a(2n+1)°
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1] RESULTANT E.M.F. 19

For a sine shaped distribution of the flux, & would be 2—3—2,
that is, 1-111.
In this case, for a bar winding, the formula for the effective
voltage would be
V=2222fN'P, x 1075
For example, if V' were 1000 volts, the frequency 50 and the
number of bars joined in series round the armature 200, then

@, would be 45 x 10° ¢.¢.S. units nearly.

When an armature coil consists of many turns of wire, it is
obvious that some of the windings will have a
Effect of the . greater breadth than others, and hence, all the
e electromotive forces generated in the various turns
of the coil windings will not be in the same phase.
If e,, e,, ... en be the electromotive forces generated in each
turn of the coil, and e be the resultant electromotive force at its
terminals, we have
e=e+ete+...+e,.

By squaring and taking the mean of the values for a whole
period, we get
V2=3SV2+25V,V,cos a.,,
where ay., is the phase difference between ¢, and e,. Since, by
hypothesis, all these phase differences are not zero,

SV2+ 25V, V,cos ay.y is less than (V, 4+ Vo4 ... + V)2

We see, therefore, that V is less than V, 4+ V,+ ... + V,,, and
hence, the effect of the electromotive forces in the various turns
not being in phase with one another is to diminish the effective
value of the resultant electromotive force generated.

It has to be remembered that the quantities V,, V,, ... V,, only
compound together according to the polygon law in certain very
special cases (see Vol. I, Chap. vii1), and hence it is not correct to

- say that the above theorem follows geometrically from the polygon

construction.

The formulae for the electromotive force of an alternator on
open circuit, given above, are obtained on the supposition that the
breadth of the armature coils is negligible, so that all the electro-

2—2



20 ALTERNATING CURRENT THEORY [cH.

motive forces developed in the windings are in phase with one
another. These formulae, therefore, fix the maximum possible
values of the open circuit electromotive force. In order to find a
formula which will take into account the breadth of the coil, we
must, as formerly, make some assumption as to the shape of the
flux. If we assume that the distribution of the flux is represented
by the curve shown in Fig. 10, then, it is easy to show that the
shape of the resultant electromotive force wave would be different
from this curve. This makes the calculation of the formula for
the electromotive force very laborious. We shall assume, therefore,
a sine distribution of the flux, since, in this case, the resultant
electromotive force wave is of the same shape as its com-
ponents.

Let us suppose that the armature is cylindrical in shape and
that it is the rotor. We shall suppose that the flux density at

Fig. 12. The breadth of the coil is b and the breadth of the sides
of the coil is c.

right angles to the surface of the rotor on a line, parallel to the
shaft, at a distance 2, measured along the circumference of the
rotor, from a parallel fixed line, tangential to the surface of the
rotor, is given by Bsinma/a. The fixed line, therefore, is midway
between two consecutive poles as the radial magnetic force is zero
at all points along it. Let us now suppose that the armature coils
are similar to the coil represented in Fig. 12. The breadth of this
coil is b, and the breadth of the sides of the coil is ¢, so that b —2¢
is the breadth of the narrowest winding of the coil. We suppose
that these breadths are all measured along the circumference of
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the rotor. If there are n layers in the side of a coil (there are
3 in Fig. 12), and if % be the distance between consecutive layers
we shall have (n— 1) A equal to ¢. If m be the number of wires in
a layer, mn will be the total number of windings in the coil. If we
now make the assumption that the E.M.F. developed in a conductor
1s independent of its radial depth, we get for the instantaneous
value e of the EMF., in volts, generated in a coil

¢.10°=mlBsin 7~ gl_ L Fo iy [ e e mie k) de

a dt a dt+”'

. mi{g—(n—=1)h}de
+mlBSln———*~a—*dt
—mlBsinM(g: mlB sin— {LM} j‘: r

where « is the distance of the end layer of the coil from the fixed
line, and a length [ of each of the conductors is supposed to cut
the flux. Summing this series we get

sin nlh
edt.10°=mlB G L g e o 1)k
. wh i a 2a
sin ~—
2a
—sin{r(x_b)+w(n—1)h” d
a 2a
sin ,’—L:’Th
& '2mlB i Tk {% = %a } cos % dz.
sin %

If e,, denote the mean value of e we get, on integrating over the
half of a period, and noting that the limits on the right hand side
are from O to a,

sl==— mrh
e £ 2lBa {'n'b m(n—1)h arb
§€m.10—27n.—’_. = 7T}l \l T 1n—2—a.
sin —
2a

Again, since we suppose that the velocity of the rotor is uni-
form, e is sine shaped, and thus

em. 2 /\/2 -V-h
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where V, is the effective value of e. Also if ®4 be the value of
the flux entering the armature from one pole, we have

&, =208
™

Substituting these values of e, and @4 in the above equation,
and noting that T’ equals 1/f, we find that

=) nah
o _ 2a . (wb w(n—1)h) . b
V.10 =7 /2 fin® 4 —— T sin 5q = T 9g [ il
sin — s
2a
and thus
Sinmrh
o 153 2a wh wr-1h . wb
V.10°=4-443fND, ’sm og—  Bg [ERgae
n sin 5

where N denotes the total number of turns in series on the
armature and V is the value of the resultant EMF. When n
equals unity and b equals @, we see that this agrees with the
formula for a simple bar winding when the flux is sine shaped.

To illustrate the effect of the breadth of the coil on the voltage
generated, let us consider a numerical example. Suppose that the
polar step, that is, the distance between the middle points of two
consecutive polar faces measured along the circumference of the
circle on which these middle points lie, is nineteen inches. Since
in practice, the distance between a polar face and the rotor 1s very
small compared with the radius of the rotor, we can assume
without sensible error that @ is 19 inches. Suppose also that the
distance between the axes of consecutive slots on the rotor surface
is 2 inches and that the breadth of the largest winding of the coil
is 18 inches. If each coil of the armature has three layers as in
Fig. 12 so that the breadths of the windings are 18, 14 and
10 inches respectively, and the number of windings in each layer
is the same, we have

sin o
b e val 38 i 187 471') . 187
V.],o_444of¢\<1>4381n2 (3q =5 ) Sit oo
38

= 4443fND 4 x 0-880.
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and it is necessary that the connection between the two should be
known. This can be found easily by experiment and is generally
shown by a curve which has the voltage between the terminals on
open circuit for ordinates and the ampere turns per field magnet
spool for abscissae. To find this curve we proceed as follows. An
ammeter is placed in the exciting circuit, and an electrostatic
voltmeter is placed across the terminals of the machine. The
alternator is then run at its normal speed, and, as the excitation is
increased from zero to its maximum value, simultaneous readings
of the ammeter and voltmeter are taken. These values, when
plotted as described above, give the open circuit characteristic.

VOLTS
/'/
4000
// AMPERES
7
/
A//
200 // // 1000 "
/
g
74
/ //
/// 5 oo
1000 /
/|
/4
/4
Q 5000 10000 15000 20000

Ampere turns of excitation per spool.

Fig. 138. 04 is the open circuit characteristic of a 1250 kilo-volt ampere alter-
nator. OB is its short circuit characteristic. The points 4 and B give the full
load volts and amperes.

In Fig. 13 the curve 04 is typical of an open circuit characteristic
curve. It will be noticed that almost up to the full working
pressure it is a straight line. It then bends downwards. —f}g—m

he divecT 1on (5( Tee Trookst Lot
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If we assume that an alteration of the ampere-turns in the
field magnet windings does not alter appreciably the shape of the
curve representing the flux in the air-gap, but ouly alters the scale
of the ordinates of this curve, then, when the machine is run at
constant speed, the voltage on open circuit will be proportional to
the flux per pole linked with the armature. To find a formula
connecting the voltage and the exciting ampere-turns nC of the
field magnet we find, first of all, a formula connecting nC and the
flux ®, entering the armature from a pole. In Vol I, p. 51, we

obtained the equation
4mn0/10

Flox = Reluctance’

where the reluctance is calculated by the formula /uS, I denoting
the length of the path of the flux, S its cross sectional area and u
the permeability at the given flux density. Now, in practice, we
are given the permeability curve of the iron, and so, if we know the
flux, and therefore the flux density, we can calculate the reluctance.
Similarly, in this case, when we know the magnetic force we can
find p, and thus we can find the reluctance and the magnetic flux.
In proving the above formula we considered the case of an infinite
solenoid so that the magnetic force is assumed constant at every
point on the cross section. We saw, however, that in the case of a
finite circuit, like an anchor ring uniformly wound with insulating
wire carrying a current, the magnetic forces to which the iron is
subjected are not constant but are greater at points near the inner
circumference of the ring than they are at points near the outer
circumference. If the permeability corresponding to the given
magnetising forces be represented by a point on the steep part of
the permeability curve, so that a small variation in the value of
the magnetic forces makes a large variation in the value of the
permeability, then the variation of the flux density over the cross
section of the ring may be large. It follows that I/uS, where u is
the permeability corresponding to the density ®/S, may not give
the true value of the reluctance. The formula, therefore, which is
used in practice for the magnetic circuit is only approximately
correct.

In a dynamo, the path of the flux in a field magnet is partly
in the iron and partly in the air. It is customary to extend the
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magnetic analogy of Ohm’s law to this case, the reluctance of the
paths in air and the paths in iron of the flux being calculated
separately by the formula I/uS, and the sum of these quantities
being given as the total reluctance of the magnetic circuit. In
practice, it is only possible to find these reluctances approximately,
and in the case of armatures with slots the calculation is a difficult
one. The methods of approximating to the values of these reluct-
ances are explained In treatises on the design of direct current
dynamos and a method of finding the reluctance of the air-gap is

given in Chapter 11. Formulae containing reluctances, which can *

only be calculated roughly, have a limited use. They are, howeyer,

a belp to the designer as they show him the relative effects '
produced by alterations in the various parts of the magnetic
circuit. In what follows we shall assume that the armature has =

a smooth surface.

In practice, it is customary to consider ampere-turns nC
instead of magnetomotive force 47nC/10. To simplify the for-
mulae, therefore, we shall denote the reluctance of a magnetic
circuit by 47®/10 so that the fundamental equation becomes

nC
Hlnc= ®

Let us now consider the magnetic flux linked with two adjacent
poles IV, and S, in a multipolar field N, S,, Ny, S,, Ny, .... The
flux proceeding from &, is linked with both S, and §,, half of it
coming back by S, and half by S;. We shall consider the flux

linked with N, and S,. This flux will be half the total flux j

leaving the pole N,. On leaving N, an amount ®,/2 of this
portion of the flux will leak directly through the air to the
pole S.;. Let the reluctance of the path in the air of this leakage
flux be 47®,/10. The remainder ® /2 of the flux leaving X, and
linked with S, will after passing across the air-gap, the reluctance
of which we will denote by 47®,/10, enter the armature. Let the
reluctance of the path of the flux ®4/2 in the armature between

N, and S, be 47®4/10. After crossing a second air-gap (47®,/10)

this flux will enter S,. The flux (®4+ D,)/2 will complete its
path through the pole S;, then through part of the iron ring to
which N, and S, are both fixed, and finally through %, to the
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We also have (Rs+2®) P, =R, D,,
4nC
TR AR 2R+ RA(Ry+ 2R R,

In practice ®, is large compared with ®R,(®R, + 2®,), and ‘
therefore, we have approximately
%f: R+ R, + 2R,
Now, when the magnetising force is not large, the permeability of
the iron or steel is very high, and thus, since reluctance is in-
versely proportional to permeability, ®;+ R, is small in comparison
with 2®,. But the value of 2@®, is independent of the magnetising
force, and therefore, the ratio of nC' to ®, is very approximately
constant if the magnetising forces are not large. Thus the curve
having @, for ordinates and nC for abscissae will be very approxi-
mately a straight line until nC becomes large. When nC is large
the iron in the path of the flux becomes saturated, and so ®;+ @
becomes appreciable and the curve giving the armature flux @, in
terms of nC' begins to bend downwards. If the relative distribution:
of the flux in the air-gap does not alter as nC' is increased, V will
be proportional to ®,, and thus we would expect the open circuit:
characteristic to be similar to the curve A shown in Fig. 13. In{
machines with large air-gaps, the open circuit characteristic is:
almost an exact straight line. In machines with insufficient iron,
or iron of inferior quality, in the field magnets the characteristic
curve bends down rapidly and the loss of power due to the large
excitation required is excessive.

R — Pp——

and thus

If we neglect the breadth of the coils in the armature circuit
of an alternator, the formula for the open ecircuit
electromotive force, namely

V =4kfND, x 1073,
enables us to find ®,. From Fig. 14 we see that
Ru®o = (R4 +2R)) Dy,

(RA + 2@9 + @a
[CH

Flux curves.

and therefore @, 4+ d,=
== 'U(I)A 3

_Ri+2R, + R,
= oh :

Sy

where
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The coefficient v is sometimes called the leakage coefficient, and
sometimes ‘ Hopkinson’s coefficient.” Hence, if we multiply the
ordinates of the open circuit characteristic by 10°v/4kNf, we get
the curve showing the total flux in the field magnets for various
excitations.

In practice, the calculation of v is difficult. It is to be noted
that whether the armature or the field magnets rotate, the path of
the flux in the field magnets is continually rotating relatively to
the iron sheets of which the armature is built up. It follows that
the polarity of the molecules of the iron in the armature alter-
nates with the frequency of the alternating EM.F., and if the flux
density in it be high, the loss in the iron of the armature due to
hysteresis and eddy currents will be considerable. This will affect
the accuracy of the fundamental magnetic equation. Assuming,
however, that this introduces no serious error, we must calculate
the values of ®,, ®, and ®, in order to find ». This calculation
is very difficult as the paths of the flux are not simple geometrical
curves and the permeability of the iron in the various parts of the
magnetic circuit is not accurately known. We can, therefore, as a
rule, only make a rough approximation to the value of v by calcu-
lation. An average value for » in good modern machines would
be about 12, but occasionally it is 1'3 or even higher. For a
particular type of machine, however, designers can estimate its
value with fair accuracy, and thus, by the aid of the formulae given
above, it would be possible to predetermine the open circuit voltage
of the machine for any excitation and at any speed. We could
therefore predetermine the open circuit characteristic curves of
the machine for various speeds.

If we short circuit the terminals of an alternator through an
ammeter when the field magnets are only feebly
excited, the current will not be large. This is due
to the small value of the electromotive force generated
and the appreciable impedance of the armature itself. If we
now gradually increase the excitation, the machine running at
its normal speed, we can get a series of simultaneous readings
of an ammeter in the exciting circuit and of the ammeter short
circuiting the alternator. Plotting out a curve (OB, Fig. 13),

Short circuit
characteristic.
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having ampere-turns of excitation per field magnet spool for
abscissae, and short circuit amperes for ordinates, we get the short
circuit characteristic. The curve is practically a straight line.
The excitation required for the electromotive force to produce the
full load current in the short circuited armature is much less than
that required to produce the full load current in the armature
together with the voltage required for an external non-inductive
load. The phase difference, however, between the current and the
EMF. generated is greater in the case of the short ecircuited
armature and one effect of a lagging current is to demagnetise
the field. In some machines this effect is very marked, and
appreciable magnetising currents are required in order to get the
short circuit characteristic. In order to understand why a lagging
current tends to demagnetise the field magnets, we shall consider
in detail some simple armature windings.

A simple method of studying cylindrical (drum) armature
re windings is to imagine that the winding is cut across
windings.  parallel to the axis of the drum and developed out
into a plane. In Fig. 15 a diagram of a four pole alternator is

(s E—— —<q,
T ' = T,

¥

v N g S 4 N g S v

e— A =]

>

Fig. 15. Expanded diagram of a four pole alternator. Simple wave winding.
The arrow indicates the direction of rotation of the poles. The Greek letters
indicate the magnetic effects of the currents in the armature.

shown expanded in this fashion. If the field magnets rotate, we
can suppose that the poles are moving underneath the windings
in the direction of the arrow. The electromotive forces developed
in the wires will act in the directions of the arrow heads. These
directions are the same as if the field magnets were stationary and
the armature rotated in the opposite direction. Hence by applying
Fleming’s rule we find them at once. 7; and T are the terminals




1] WAVE WINDINGS 31

of the machine and the points a, and a, coincide, when the winding
is on the armature,

If the adjacent active conductors of the winding T’ a, (Fig. 15)
be at a distance from one another equal to the polar step, the
electromotive forces developed in adjacent conductors will be in
exact opposition in phase, and thus, since the conductors are
connected so that the EM.F.s act in the same direction round
the winding, the effective value of the resultant EM.F. between
T, and @, will be equal to the sum of the effective values of the
E.M.F.s developed in the four active conductors between 7', and q,.
Similarly, the effective value of the resultant EM.F. between 7,
and a, will be the sum of the effective values of the EM.Fs
developed in the four active conductors between these points.
The electromotive forces, however, developed in the two windings
T\a, and a,T, will only be in phase when the windings are super-
posed. Thus a differential action between the various EM.F.s
developed can only be avoided by using a simple bar winding.

If the distance between any two conductors which pass across
the face of a pole in Fig. 15 be greater than the minimum
distance between the poles, then, when one conductor is leaving
one pole the other will be over the next and, at this instant, the
arrow heads, indicating the direction of the EM.F.s developed
in the two conductors, will be pointing in opposite ways. The
differential action, therefore, will be excessive. In practice, the
displacement of the two windings relatively to one another is
made less than the minimum distance between the poles. We
can also have any number of windings similar to 7\, and Ta, in
Fig. 15, but the displacement of the two which are farthest apart
should be less than the minimum distance between the poles.
This simple form of winding is called a ‘distributive’ wave
winding.

When the terminals of the machine are connected through a
large non-inductive resistance, the currents in the conductors will
be flowing in the direction of the arrow heads (Fig. 15), and their
values will be large at the instant pictured in the diagram. The
armature current will produce a magnetic flux leaving the paper
perpendicularly at » and entering it perpendicularly at o. It will
thus produce a transverse magnetisation of the field in the same



way that the corresponding effect is produced in direct current
machines. The magnetic flux on the trailing side of the pole
pieces will be strengthened and that on the leading side weakened.
We should expect, therefore, that this transverse magnetisation
would have an appreciable effect on the shape of the wave of the
electromotive force generated, and on the distribution of the heat
generated by eddy currents and hysteresis in the pole pieces. This
1s found to be the case in practice.

A quarter of a period after the armature current has its
maximum value, the poles will lie between the windings, as in‘i
Fig. 17, and the current will be zero. The current now changes
sign and at the end of the next quarter of a period it attains a :
maximum value. Hence it is easy to see that in this case, namely,
when the load is non-inductive, the mean value of the magnetising
force exerted by the armature currents on the field magnets is
zero.
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i
In Fig. 16 a simple lap winding is shown for the alternatorﬁ
represented diagrammatically in Fig. 15. It will be
seen that, so far as the electrical effects produced are

concerned, the lap windings and wave windings are identical. It

Lap windings.
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Fig. 16. Expanded diagram of four pole alternator. Simple lap winding. The
Greck letters indicate the magnetising effect of armature currents which are in
phase with the E.a.F.

is to be noted that the breadth of the inner coil should not be less
than the minimum distance between the poles.

In Fig. 17 the developed diagram of this alternator is shown a
quarter of a period later, when the electromotive force is zero. If
the current is ninety degrees in advance of the electromotive force,
it will be seen from Fig. 17 that the magnetomotive force increases
the magnetisation of the field. If, on the other hand, the current
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is lagging by ninety degrees, the magnetising effect of the
armature coils directly opposes that of the field coils and so the
flux in the air-gap is weakened.

-I-1 current leading current lagging -I-2
V| 2 Al I
S N s LT w s
14 a
e eter H— SO

Fig. 17. The diagram of the four pole alternator (Fig. 16) as it would appear
at a quarter of a period later. The magnetising effect on the field magnets of leading
currents is shown at »Nv. The demagnetising effect on the field magnets of lagging
currents is shown at ¢ No.

It is of importance to be able to calculate the value of the
. distorting magnetic forces produced by the currents in
of two the armature. We have seen that when the armature
TACHORS Gurrent is in phase with the electromotive force it tends
to magnetise the field transversely, and when the two differ in
phase a direct magnetising or demagnetising effect is produced on
the field magnets according as the current is leading or lagging.
In order to find formulae to give the magnitude of these effects
we must know the shape of the current wave. If it varies
according to the sine law and lags by an angle +» behind the
electromotive force, then

1 =1 sin (0t — ).
If it does not vary according to the sine law, it could be expressed
in a series of sines by means of Fourier’s theorem. The full discus-
sion of the general case, however, is difficult, and so in what follows
we shall make the sine curve assumption.

Now, when the current ¢ in the armature follows the harmonic
law, 1t may be written in the form 7 sin (wf— 1) or

I cosyrsin wt — I sin 4 cos wf,
which equals
1 cos r sin of + I sin Y sin (wt — 7/2).

Hence we may regard ¢ as the sum of two currents, having
maximum values J cos ¥ and I sin+r respectively, and differing

RATL 3
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in phase by ninety degrees. The current which has a maximum
value I cos+ is in phase with the electromotive force developed
in the conductors of the armature, and it produces therefore
only a transverse magnetising effect on the field. The current

I sinyr sin (ot — 7/2) lags 90° behind the electromotive force and =

produces a direct demagnetising force on the field magnets. This
method of splitting the magnetising force due to the currents in the
armature into two components at right angles to one another is
known as the method of two reactions and was first stated by
Blondel. ‘
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Fig. 18. The polar step equals a. The breadth of the polar flux entering the
armature equals b. The distance between the axes of the slots equals ',

We shall consider the case of a machine with a simple coil
winding on the armature, as in Fig. 2, and we shall 2

Formula s calculate the mean value of the demagnetising ampere-
g eig burns acting on the field due to the current in the
:g;“gg;‘:’e’:t"f armature. Let there be 2V, conductors in a slot, and
therefore IV, vurns per pole. We shall suppose that

the magnetomotive force, due to the current in an armature coil, -

acting on a given tube of magnetic flux in a field magnet, changes

from (47/10) N, sin y sin (@t — 7/2) to zero, or vice versd, when |

the tube passes through the axis of a slot. We shall assume that
the breadth of the arc intercepted on the cylindrical armature by
the flux leaving a pole is b, and, since the flux leaving a pole spreads
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out in the air-gap, b will be greater than the breadth of the pole.
Let us assume also that the density of the flux entering the
armature is uniform. Let b’ be the breadth of an armature coil,
measured along the circumference of the armature, between the
axes of the two slots (Fig. 18) and let @ be the polar step, that
is, the distance between the middle points of consecutive poles
measured along the arc of the circle on which these middle points
lie. As the air-gap is very narrow compared with the radius of
the rotor we may, without sensible error, assume that the circum-
ference of the armature is 2pa, where 2p is the number of the
field poles. For convenience of drawing, we have shown the
sections of the polar and armature faces as if they were straight.
Suppose now that the faces of the poles of the field magnets are
moving with a linear velocity 2a/7, and let O (Fig. 18) be taken
as the origin from which the distance x (Fig. 19) of the end of the

Bl 5 1.

b-b b+ b

Fig. 19. In this diagram z is greater than but is less than a — 5

trailing flux is measured. If the space x be described in time #,

then, since the air-gap is very narrow, we may write
z=2at/T=awt/w, since w=27/T,

and therefore wt=mz/a.

Hence, the lagging component of the current may be written
in the form 7 sin ¥ sin (7rz/a — 7/2) or — I sin y cos ma/a.

We only need to calculate the mean value of the magnetising
turns produced by this current during a quarter of a period, as
this will be the same as over a whole period, for the frequency of
this magnetising force acting on a pole is double that of the alter-
nating current. We shall first find expressions for the magnetising
force during various intervals of the quarter period, and then
calculate its mean value.

3—2



36 ALTERNATING CURRENT THEORY [cn.

The first interval of time is the time taken by z (Fig. 18) to
increase from zero to 4 (b—"5). In this case, the demagnetising
turns of the armature coils act only on the fraction &'/b of the
total flux entering the armature. The magnetising ampere-turns,
therefore, from « equal to zero to « equal to % (b —b’), are

— (b/'/b) NI sin yr cos a/a.
When « (Fig. 19) is greater than % (b —0') but less than
$(@-0)+(a-0),
the coil embraces the fraction [b'— {z—% (b—10")}]/b of the total

flux. The value of the magnetising ampere-turns, from # equal
to $(b—"b") to z equal to a— 4 (b+1?), is therefore equal to

_%{%(b+b')—x} Nllsin\[rcos%m.

When z (Fig. 20) is greater than a—3%(b+b’), some of the flux
from the pole is embraced by the adjacent coil which tends to

Ld BEils

Fig. 20. In this diagram z is greater than a — b—-—;i but is less than %.

magnetise it in the opposite direction. Hence the magnetising
ampere-turns, from « equal to a —% (b +b’) to # equal to § a, are

—%—[b’—{x—%(b—b’)}—{x—(a—%m)}] NI sinypcos ™2,

which is equal to

a—2zx ; T
—( 5 )N,Ism\]rcosF.

If A, therefore, denote the effective value I/4/2 of the armature
current during the time the field magnet takes to move from 0 to
a/2, and if alV, 4 sin y» denote the mean value of the demagnetising
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ik {1 NS 2_7;(b+b')}
S _2_0/ I ) ( oy _71 b +
a2, T %

B PR R P |
_W{cosza(b o) cos2a(b+b)J

Y sin gt (b48) +cos o (b4 b’)}

Q0% 7rb’ )
= —gin sm —
T 2a°

Therefore a= 4 ;\:;Zba sin i sin b

2a 2a°

This formula enables us to find the values of a, and thus, when
the current 4 in the armature and the angle 4 of lag of this
current behind the electromotive force are known, we can readily
find the mean value alN; A4 sin+r of the demagnetising ampere-
turns per pole. If we suppose that b is equal to a, then, in the
case of a simple bar winding o is 0°58 nearly.

When + is negative, that is, when the current is leading,
aN, A sin 4 is also negative, and thus, in this case, the armature
reaction strengtheus the field.

If the breadth of the slot be ¢ and if it contain many con-
ductors, we can get a more accurate formula as follows. Let & be
the distance between the axes of two neighbouring wires which
are equidistant from the axis of the rotor, and let nh be equal to c.
Calculating the demagnetising force for each turn separately, and
adding the results, we find that

aN, A sip A = %Nllsin ¥ sin gg
& 7 (b _h)-{-%inw(b ——3h)+ +sin1r(b —2n—1h)

2a E 2a 2a
n

X

>

where b” is the distance between the outside edges of the two
slots. Summing the series we get

”

sm i ke ST B d
wb > (20~ 2af ¥ 20

2a ST
7 SIn =—

adZ .
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Now b” equals ¢ + b, where V' is the distance between the axes of
the slots. Thus, when = is large, so that we can write mc/2an for
sin 7rc/2an, we get

sin 7°
SEaye A3 sin 7_r£) sin W—bl _2a
T 2a 2a¢ me
2a
) 2ot b
It will be seen that the factor = sin % corrects for the breadth of

the coil. The following table shows how this factor varies with
the ratio of ¢ to a.

'% 0 0-05 | 0:10 | 0:15 | 0-20 | 0-25 | 030 | 035 | 040 | 0'45 |

22 Gn ™ [1:000 | 0-999 | 0-996 0-991l0-984 0-975 | 0-963 | 0°950 | 0-935 | 0-919 |
|

me 2a

An approximate value for the ampere-turns round the field
magnetsrequired to compensate for the demagnetising
:10; Té’.fpﬁ‘i.'. effects due to the current in the armature, when sin+r
i required s DY zero, can be found as follows. We have seen
enec'd  that the mean value of the demagnetising ampere-
turns per field magnet pole is aN;Asin. The
compensating ampere-turns per pole must be greater than this
since all the flux generated in the field magnets does not pass
through the armature coils. If we amplify the electrical analogy
shown in Fig. 14 we get Fig. 21. In this diagram #/C” represents
the ampere-turns, of the compensating coil on every field magnet,
required to keep the flux in the armature constant, and aV, 4 sinr
denotes the demagnetising ampere-turns per pole, due to the
current 4 in the armature windings, when the power factor is
cosyr. Let the reluctances, divided by 47/10, of the path in the
armature, of the leakage paths in air, of the two air-gaps, and of
the path in the field magnets, traversed by the flux linked with
two adjacent field magnets, be denoted by ®R,, ®,, 2®, and R,
respectively (p. 26). Let also @, be the flux from a pole, linked
with the armature, and let ®, be the leakage flux from a pole, on
open circuit. The magnetic equations on open circuit are

4nC—G?f(®A+®a)=((RA+2mg) ¢A=@aq)a ...... (1),
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the air. Our equations in this case are
4(nC+nC")— R (P + D)
=(®,+2R,) D, +4aN, A sin Y =R, D, ...(2),
since the flux in the armature is made the same in the two cases
and we suppose that ®; remains constant.
Subtracting (1) from (2) we get
40'C' — R (P, — D) = 4aN, A sinr

55 CRa ((I)a, o (ba):
and therefore W0 =} (R + Ry) (P — Do)
= (1 + %) alN, A sin .

Let us now suppose that ®, does not remain constant, and that
its value is ®;+ A®,; when the leakage flux is ®,. In this case
equations (2) must be written in the form
4(nC+n'C")— (R + ARy) (P, + D) =(R + 2®,) D4 +4aN, Asinvyr

= @a (pa, .................. (3).

Hence, by means of (1), we get
40/ 0" — (R + ARy) (D, — D) — ARy (D4 + D,) = 4aN, 4 sin .
From equations (1) and (3) we easily find that

4aN, A sin = R, (P, — P,)
and 4nC= (D, + D,) {(Rf 4F @ @, + 2@“7)} A

R+ R, + 2R,

Thus, by substituting for (D,"— P,) and (P, + P,) their values
and simplifying, we get

n'C’ = <1 + @f%&‘?j‘) oV, A sin 4

+nC. A@f/{@f_‘_ GMQ)}

(Ra‘i‘@d “r 2@9

We can find AR, from the open circuit characteristic by the
following construction. The flux curve OP (Fig. 22) can be con-
structed from the open circuit characteristic when we know the
form factor & of the wave of the electromotive force. Also if we
can calculate ®,, ®, and ®, we know v, and thus by p. 28 we can
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Let us suppose that, instead of keeping the magnetic flux
. through the armature constant, we maintain the
compen- R
peampere. flux in the field magnets constant. In this case,
o keep the  we can find a simple formula for the compensating
ux in the i X
1d magnets ampere-turns per pole. Using the same notation as
s before, our equations are
C— Qi (P, + D) =(R,+2R) P, =R, D,,
d
C+4n'0" — Ry (D, + Dy
=(R,+2R,) ¥ + 4aN, A sin yr
= G?a (Dal,
d, by hypothesis,
D+ D =D, + P, :
Therefore ' = (R, +2R) (P, — D)+ 4aN, A sinr

=—(R,+2R) (D, — P,) +4aN, 4 sin ¢

=R (D) — Do)
TR 4aN, A sin
R+ R, + 2R, g
d thus n’O'=gN1A sin yr,
here v is Hopkinson’s coefficient.
We also have
A __ 4aN,Asin
\(DA <DA— @A+@a+2mg.

us, in order to prevent the flux in the field magnets falling
low its no-load value, when the current flowing in the armature
windings is 4 and the power factor is cos+r, the ampere-turns
acting on a field magnet must be increased by alV,4 sinr/v.
The flux, however, entering the armature from a pole will be
diminished by 4alN, 4 siny/(R, + R, + 2®,).

We shall now consider the effect of the component 1 cos yr sin wt
I of the armature current which is in phase with the
ransverse i *
magnetisation electromotive force. This component produces a
o . . .
i transverse magnetisation of the field magnets, so
that, in rotating field machines, the field in the air-gap under the
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leading polar horn, that is the leading end of the polar piece,
weakened, and that under the trailing horn is strengthened by th
component of the current. When the armature rotates, a simil
distortion of the field is produced; in this case, however, the oth
end of the polar piece is the more strongly magnetised, as the effe
is the same as if the armature were at rest and the poles rotat
in the opposite direction. In order to get a measure of this dis-
torting effect, we will find a formula for the difference between &
magnetlsmg ampere-turns due to this current acting on the ﬁuxl4<
in the two sides of a field magnet pole. '

Let the arc intercepted by the polar flux on the circumference
of the armature be b, and suppose that this arc is greater than 8}
the distance, measured along the circumference, between the axes
of two slots in the armature in each of which there are 2N,
conductors. If a be the polar step, we can express the com‘t

Fig. 23. Relative positions of the pole and the armature coil when z lies
between 0 and % (b-?). .

ponent of the current which is in phase with the E.M.F. in the
form I cos sin ma/a, where « (Fig. 23) is the distance of the end
of the trailing flux from a fixed point O on the armature. We
shall consider the difference of the effective magnetising ampere-
turns of the coil, acting on the fluxes coming from the leading
and the lagging half of the polar face of a field magnet, as this
difference will be a measure of the distorting forces acting on the
field. We shall find expressions for this ditference during the
quarter of a period, starting from the instant when it is zero.
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When « lies between /2 and a/2 (Fig. 26), the difference
of the ampere-turns is

%{%—(x —-%)+w a+—b—+rb}NIIcosxp-sm-——

or %(b+b'—a)N,]cos«[rsin'%w.

ence, if BN, A cosyr, where A is the effective current, denote
he mean value of the difference of the ampere-turns acting on
ach half of the polar flux over the quarter of a period, we have

b-b' b+b'

S _B= : 2ws1nadw+[ (w+b~
V2 0 b-¥ 2

"N . m=x
) sin — dz
a
o
bl

a
2 2
+f (2w_a+b)sin”—“dx+(b+b'—a)f sin ™ do,
a—b—+b' = a b_’ a
2

4V2a el b
B=———sin — % (1 — cos %)

It is easy to see that the mean value of BN, 4 cosyr over the
hole period is the same as over the quarter of the period. This
xpression, therefore, gives us the mean value of the magnetising
turns of the armature current which act so as to distort the
magnetic field in the air-gap. It is due to C. F. Guilbert.

We can also show that the above formula for BN, 4 cosr is
true when the distance 0’ between the axes of the slots is greater
than the breadth b of the polar flux entering the armature, and
also when b’ is less than a —4b. It is therefore always true.

Let us now consider how a and B vary with the breadth of the
polar flux and with the breadth of the coils. We have shown
that

_4v2a . @b . b

= R T T
and B—4N/2a in;rz <1—cosgg),

where b is the breadth of the arc intercepted on the armature by
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the flux leaving a pole, and b’ is the breadth, measured along the
circumference, of an armature coil. The greater the value of b’, as
long as it does not exceed the polar pitch «a, the greater will be
the values of @ and 8. We can see also that the greater the value
of b, that is, the broader the poles, the greater will be the values of
both a and 8. Again, we have

T
a” g
and thus, the broader the poles the greater will be the ratio of the

transverse magnetising coefficient 8 to the direct magnetising;
coefficient a. ‘

In the following table the values of a« and B for various values
of b/a are given for the case when the breadth of the coil equals

)
the polar pitch, as, for example, in a simple wave winding.

In this case, we have ;
a=4—7:/§-2—%sin727—2=0'573%singg, !
and B=atan Z—(I; .
g 1 09 0-8 07 0-65 | 0-6 0:55 05
o 0-573 0-629 0:681 0:730 0752 0773 0-792 0-811
8 0573 | 0537 | 0495 | 0447 | 0421 | 0394 | 0-365 | 0-336
I

When the breadth b’ of the coil is not equal to the polar pitch
a, we have to multiply the values of « and 3 given in the preceding

. mb’ : . ol HaS
table by smga The following table shows how sin 5, varies
with the ratio of b’ to a.

Y 1| 09 | o8 | 07 | 065 | 06 | 055 | 05
sin 1% 1 0-988 0-951 0-891 0-853 | 0809 0-760 | 0-707
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Let us suppose that the distance between the axes of the slots
is 16 inches and that the breadth of the polar flux
tameieal  entering the armature is 18 inches. Let the polar step
be 20 inches, the number of conductors in a slot 48 and
the effective value of the current, which we assume follows the
harmonic law, 100 amperes. Then, in our notation,
a=20, b=18, b =16, N,=24 and 4 =100.
The ampere-turns aV, 4 sin ¥ acting on the direct flux

=4“/2aN1A sin 4 sin 7—2% sin e

b 2a
= 1435 sin .
The ampere-turns BN, 4 cos 4 acting on the transverse flux
b .
=alV, 4 cosr tan ;—Ta
= 1225 cos .

The following table gives the values of aV, 4 sin ¥ and BN, 4 cos+r

for various power factors.

cos ¥ 0 0-1 0-2 0-3 0-4 05 0-6 07 08 0-9 1-0

tindegrees | 90 | 84:3 | 785 | 725 | 66:4 | 60 | 531 | 456 | 36:9 | 258 0

Nydsiny | 1435 | 1428 | 1406 | 1369 | 1314 | 1243 | 1149 | 1024 | 860-6 | 6256 0

N, 4 cos y 0 [122:5| 245 |367-5| 490 |612-5| 735 |857-5| 980 |1102-5 | 122¢

If we vary the load connected with an alternator which is
running at constant speed, and if the exciting current

B " in the windings of the field magnets be constant, we
find that the potential difference between the termi-

nals of the machine varies with the load. Let the load in the
external circuit be varied, always keeping the power factor constant
and equal to cos, and let simultaneous readings of the voltage
at the terminals of the machine and of the current in the external
circuit be taken. If we plot these readings in a curve, having
the terminal voltages for ordinates and the currents in amperes for
abscissae, we get the load characteristic for a power factor of cos "

Rl 4
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Let us now consider the relative magnitudes and phase dif-

ferences of the electromotive forces generated in the
The electro-

motive forces armature and of the potential difference at the ter- -

in the

oA . minals of the machine for loads of various values and

power factors. We shall assume that the open circuit
and the short circuit characteristics of the alternator are known.
We have already discussed the principle of two reactions, and we
have found formulae for the direct and transverse magnetising
turns acting on the field which are due to the currents in the
armature when these currents follow the harmonic law. Let us
suppose that the equation to the open circuit characteristic is

V=F@0),

where V' is the value of the open circuit voltage, and nC represents
the ampere-turns of direct current excitation acting on a field
magnet. We can always find from the curve the value of ¥ cor-
responding to a given value of nC, or the value of nC corresponding
to a given value of V. Now if we have a current, of effective
value 4, in the armature, and if it lags by an angle +» behind the

*

E.M.F. generated in the armature conductors by the direct flux, the =

mean value of the magnetising ampere-turns acting on each
magnet will be nC— alN, 4 siny. Hence we can find at once,

from the open circuit characteristic, the EM.F. f(nC — alV, 4 sin )
generated by the direct magnetic flux.
We have shown that the mean value of the magnetomotive

force, due to the armature current, acting on the transverse flux is ‘

47BN, 4 cos y/10. Since it always acts in one direction, the
fluctuations in the value of the transverse flux due to it are small
owing to remanence. We shall assume that it gives rise to a
constant flux. Let the eclectromotive force generated in the
armature by this transverse flux be denoted by (BN, A4 cosr).
This EM.F. will be proportional to 4 cos+, and hence it may be
written in the form F (BN, A4).cosy. When the EMF. generated
in a coil by the direct flux due to the armature currents is zero,
the EM.F. due to the transverse flux is a maximum or a mini-
mum. It follows, therefore, from our assumptions that the EM.F.s
generated in the armature by the direct and the transverse flux
differ in phase by ninety degrees.
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We have seen that some of the field flux does not enter the
armature. Similarly, some of the flux due to the armature current
is not linked with the field windings. As the current in the
armature varies, this leakage flux varies also, and a back electro-
motive force is set up which acts in exactly the same way as the
flux inside an inductive coil. This electromotive force is called
the leakage E.M.F. of the armature. It is approximately propor-
tional to the effective value 4 of the armature current. If the
alternator is working on an inductive load, the power factor of
which is cos, then, we have the following EM.F.s acting round
the circuit: an EM.F. f(nC —alV; 4 sin+r) due to the direct field
and an EM.F. F (BN, A cosy) due to the transverse field. These
EM.F.s differ in phase by ninety degrees. In addition, we have a
leakage EM.F. which is approximately proportional to A, and
differs from it in phase by an angle which, since this leakage E.M.F.
is appreciable and does very little work, is almost ninety degrees.
We have also the EM.F. V expended on the external load, and
an EM.F. R.A4 employed in sending the current 4 through the
resistance R of the armature.

In order to see the relations between these electromotive
forces, we shall make the assumption that they can

doanE  be represented by a series of vectors in one plane and
construct a diagram (Fig. 27). In this diagram, which

is due to Fischer-Hinnen, OD represents the EM.F. due to the
direct flux, OA represents the potential difference R. 4 which is in
phase with the current, and the angle DOA is 4. CD, which is
drawn at right angles to 0D, represents F'(BN,4 cos ), or, as it
may be written without appreciable error, F' (8N, A)cos+, since
the reluctance of the iron in the path of the transverse flux is
small compared with the reluctance of the path in air, so that
the transverse flux and the EMF. due to it are approximately
proportional to the ampere-turns. AB represents the potential
ditference V across the terminals of the alternator and the angle
BAN is v, where cos " is the power factor of the external load.
BC represents the armature leakage EM.F. and is generally denoted
by LwA, where L is a constant and w is 27f, f being the frequency
of the alternating current. We have made the assumption that

42
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For a given value of 4, if OF were to remain constant, the
locus of B would be a circle round £ as centre. When the power
factor of the external circuit is unity, OB will be at right angles
to ZB. When the power factor of the external circuit is less than
unity and the load is inductive, the angle OBE will be obtuse;
if the load acts like a condenser, the angle OBE will be an acute
angle. If we assume, therefore, that OF remain constant for a
given value of A, we see that the potential difference at the
terminals of the machine, provided that the current 4 remain
constant, diminishes as 4’ increases from 0 to 90° and increases
as Y diminishes from 0 to —90°.

We see from Fig. 27 that, when the armature terminals are
) short circuited, AB is zero, for AB represents the
ftmen © terminal potential difference V. We have, there-

e ! ‘
teristic. 1€ fore, in this case

BE = O sin +,
and thus
LoA +F(BN,A)=f(nC—aN,Asinv).siny + F (BN, 4).sin*.
Now in finding the short circuit characteristic the field magnets
must, as a rule, only be excited feebly, otherwise we should get
such large currents that there would be a serious risk of damaging
the armature coils. The iron, therefore, is not saturated, and we
may write
F(nC —aN, A sinyr)=k (nC — alN, 4 sin ),
where k is a constant which can be obtained easily from the open
circuit characteristic. We can also write K’'SN, 4 for F(BN,4)
where ¥’ is a constant, and thus, substituting these values in the
above equation, we get
A {Lo + K BN, + (ko — kE'8) N, sin? yr} = knC sin .

Hence, when ¥ is a constant, the ratio of 4 to nC is constant, and
the curve showing the relation between the two is a straight line.

In practice, ¥ is a large angle, and so, putting it equal to 90°,

we get
k

“To+kadv, "

as an approximate equation to the short circuit curve. For high
values of the excitation, the open circuit characteristic curves

A C,
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downwards and & diminishes. For high values of C, therefore,
the short circuit characteristic would also curve downwards.

The synchronous impedance of an armature, for a given ex-
citation, is defined to be the ratio of the open circuit voltage, at
this excitation, to the short circuit amperes at the same excitation,
the machine running at its normal speed in both cases. Hence
we find that

the synchronous impedance = Zi’

. ("0>(L + kalVy).

For low excitations this expression equals Lw + kaV; and is con-
stant. The value of f(nC)/knC, however, and consequently the
synchronous impedance, diminishes as the excitation is increased.

If we plot out the terminal potential differences for various

= ... values of the excitation, the armature current being
aracteristics =

on wattless  wattless and of constant magnitude 4, we get two
g curves, the load acting like a condenser or like a
choking coil respectively. These curves are called the con-
denser and inductive characteristics respectively. By altering
the value of the current 4, we can get a series of these charac-
teristics. We shall now consider some of the properties of these
curves. They can be obtained experimentally by putting a variable
choking coil and a variable condenser respectively across the
terminals of the machine. When the choking coil is between the
terminals, we alter its inductance so as to keep the current
constant at all excitations, and when we have a condenser load,
we alter its capacity so as to keep the current constant. In
practice it is more convenient to use a synchronous motor
(Chapter 1v) instead of choking coils or condensers. If this type
of motor be put across the terminals of the alternator, then, by
varying the excitation of the motor, we can make the current have
a large angle of lag or lead. For feeble excitations, the current is
lagging behind the pbtential difference at the terminals, and for
strong excitations it is leading.

When a synchronous motor is employed the cosine of the
angle of lag or lead can be made less than 0°1.






1] WATTLESS CHARACTERISTICS 57

Let OP (Fig. 29) be the open circuit characteristic, and let
O'P’ be the characteristic on a wattless inductive load when the
current is maintained equal to 4. If 00" equal nC,, then, when
C has the value C,, V is zero. We must have, therefore,

LwA =f(nC,—aN,4).
Since the equation to the curve OP is y=f(z), we see that, if we
measure 0'B equal to al¥; 4 and erect the ordinate BK to the
curve OP, BK must be equal to Lwd, the armature leakage
electromotive force.

It is to be noted that the position of the point O’ can always
be determined from the short circuit characteristic curve. The
magnetising turns of the field magnet windings, when the current
in the short circuited armature is A, are represented by 00
Thus the short circuit characteristic always enables us to fix the
points where the wattless characteristic cuts OX. We shall now
give a graphical construction for drawing these characteristics
when the open circuit and short circuit characteristics are known.

Let us suppose that we have to construct the wattless charac-
teristic when the current in the armature is 4. Let 00’ (Fig. 29)
be equal to the abscissa corresponding to the ordinate 4 on the
short circuit characteristic. Calculate a by means of Guilbert’s
formula (p. 47) and make O'B equal to aN;A. Erect the ordinate
BK and join O'K. We have seen that BK equals Lod. Now
draw any ordinate QM perpendicular to 0X, make QC equal to
BK and draw OP’ parallel and equal to BO'. Then P’ will be a
point on the wattless characteristic which passes through O
To prove this, note that

PN=QM-QC
=f(ON-MN)- LoA
=f(nC —aN,A) - LwA,
and therefore, by the equation given above, P'N equals V, where
V is the ordinate of the wattless characteristic which has ON
as abscissa. 4 :

If we are only given the open circuit characteristic and a
point P’ on a wattless characteristic, we can construct this
characteristic as follows. Make NM equal to aN,4 and draw
the ordinate M@ to the curve OP. Join QP. Then, if we take
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any point R on the curve OP and draw RR’ equal and parallel to
QF', R will be a point on the wattless characteristic through P,
The wattless characteristic, therefore, can be obtained from the
open circuit characteristic by simply displacing the latter curve
parallel to itself through a distance equal to QF".

When we use a condenser or an over-excited synchronous
motor, the equation to the wattless characteristic for a given
current A is got by writing —90° for 4. Thus we get

V—Lwd =—sinyf(nC — aN, A sin )+ cos® y F (BN, A).

Assuming that 4 is approximately equal to —90°, we find that, in

this case,
V=fnC+aN,4)+ LoA.

The wattless condenser characteristic for a given current 4 is
therefore simply the open circuit characteristic displaced through
a given distance parallel to itself. It is above the curve OP in
Tig. 29. When the machine is running on a condenser load, and
the magnetising current is made zero, the terminal potential
difference is appreciable, as the magnetomotive force of the arma-
ture current magnetises the field. The wattless characteristics
found experimentally are very similar to the curves obtained by
the above constructions. It has to be remembered, however, that
we have made several assumptions in proving them which, in
some cases, are not justified. We have assumed, for example, that
the vectors in Fig. 27 are in one plane, and we have also assumed
that both +r and " are equal to 90°.

When RA, LwdA and F(BN,A)cosy are small compared

with V, we see from Fig. 27 that +r is approxi-

General equa-  mately equal to . Hence, by projecting 0ABCD
load charac- on OD, we get»

teristics.
V=f(nC—aN,Asiny)— LoA siny— RA cos .

For a given value of 4 this is the general equation to the load
characteristic.  We have already seen how to find Lwd (BK in
Fig. 29) from the short circuit and open circuit characteristics.
Calculating a by Guilbert’s formula, we can find f(nC—a N, 4 sinvr)

from the open circuit characteristic, and thus we can predetermine
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V for any current A and power factor cos+, provided that the
current follows the harmonic law and that ' is approximately
equal to .

The following particular cases may be noted.

v cos Y Formula for V'
90° 0 f(nC —aN;4) - Lod
45° 0-71 f(nC-071laN;4) - 071 (R+ Lw) 4
0° 1 f(nC)-RA
—45° 0-71 f(nC+0-71aN,4) +0:71 (Lo~ R) 4
-90° 0 f(nC+aN;4)+ Lwd

These equations may be taken as giving first approximations to
the value of V. They show clearly that for a given current the
greatest drop in the voltage between the terminals occurs when the
current lags 90°. For a condenser load, on the other hand, the
terminal potential difference may be greater than on open circuit.

By the regulation of an alternating current machine is meant
the way in which the potential difference between
aferegulation  the terminals of the machine alters with the load
and the power factor. To express it explicitly, a
series of load characteristics for various power factors would have
to be given. When ordering alternators from the manufacturer
it is generally specified that the percentage ‘rise in volts’ when
the full load, at a given power factor, is switched off, the speed and
excitation being maintained constant, must not exceed a definite
amount. By the ‘rise in volts’ is meant the difference between
the voltage at the terminals immediately after the load is taken
off and the voltage at full load, the speed and the excitation being
maintained constant. To predetermine this rise of voltage when
designing a given machine, especially if the design be novel, is a
very complex problem. For a given type of machine, by using
empirical formulae and methods designers can predetermine the
rise in volts within a few per cent., but it is not safe to apply
these formulae to other types of machine.
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We have seen (p. 58) that, when RA, Low4 and F(BN,A4)cos
are small compared with V, we may write
V=f(nl-aN,Asiny)— Lod siny — RA cos
=f(nC —alN,4 sin ) —~VR* + L*w* 4 cos (Y — 1),
where tan ¢y = Lo/R.

In this equation cos is the power factor of the load. If we make
the assumption that the current follows the harmonic law, a can
be calculated by the formula given on p. 47, and thus
S (nC—aN, 4 sin )

can be found from the open circuit characteristic. The value of
this quantity fixes a superior limit to the value of V. If we
subtract from it VR? + L*e?. 4, we get an inferior limit to V.

Now from Fig. 27 we see that, when the terminals of the
machine are short circuited, we get
RA =f(nC,— aN,A sin ). cos ¥, + F (BN, 4) . sin Y, cos Yy,
and ’

Lod =f(nC,—aN, A sinr,).sinyr, — F (BN, 4). cos*yr,,

where C, is the exciting current corresponding to the current 4 on
short circuit, and 4, is the phase difference between the armature
current and the EM.F. generated by the direct flux, when the
short circuit current is 4. We thus obtain

(R4 Lrw?) A2 = {f (nCy — a N, 4 sin r)}2 + {F (BN, A4)}? cos® ¥,
and

F(nCy—aN, A sinry) — F (BN, A).sin . cot? «Iro
S (nCy—alN, A siny) + F (BN, A). sin v,

When, therefore, F' (8N, A) is appreciable, 4, is greater than r.
If we make the assumption that the transverse magnetisation
can be neglected, we have y =), and thus
V=Ff(nC—-alN,Asiny)—f(nC,—alN,4 sin y). cos (Y — ).
If W, be the power, in watts, expended in heating the alternator
when the current in the short circuited armature is A and the
exciting current is consequently C,, we have

S (nCy — aN, A sin~p,) . A cos = W,

Since nC, — a N, A sinr, is a small magnetising force, we can write
[ 1 [

tan y = tan
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k(nCy— aN A sin ) for f(nC;—alN,A4 sin+,), where & is a
constant which is found from the open circuit characteristic.
Thus we have

(nCy~a N, 4 sinyry) cos r, = W, ;
This equation for Y, can be solved graphically. If we draw the
sine and secant curves given by the equations

y=nl,—alN,Asinz,
LK) > sec @
k4 :
the abscissa of their point of intersection gives the value of .
The potential difference V can then be determined by the equation

V =f(@nC—aN,A sin ) — IVo‘coS (ESZ\P ¥).

Since the open circuit voltage V| is given by

Vo=f(nC),
we see that, when the power factor of the load is cosvr, the drop
in volts for a given current, the effective value of which is 4, is
given by

R ) f (n = eV id. siny )+ L c"sc((‘f: - va

In proving this formula we have made the assumptlons that BA
and LwA are small compared with V, that the current follows
the harmonic law, and that the transverse magnetisation can
be neglected.

In practice, W, can be measured accurately by a transmission
dynamometer. We measure the power W taken to turn the
armature at the given speed when the field is not excited and the
terminals are on open circuit. We then measure the power W’
taken to turn the armature at the same speed when the short
circuit current is A. The difference between W' and W will be
very approximately equal to W,.

and y =

It will have been seen that the cross magnetising and de-
Y magnetising effects of the armature currents con-
Theoretical g : e
charac- siderably complicate the problem of predetermining
teristics. . . .
the pressure drop at the terminals for a given load.
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In some machines, however, these effects are not large, and so it is
instructive to find the relations between the various voltages and
the current, on the assumption that these effects are negligible.

[ CEL AN T

The shapes of the eurves obtained, on this assumption, are similar *

to those obtained by experiment on most forms of alternator.

Suppose that e is the instantaneous value of the total EM.F.
generated in the armature, v the external potential difference,
R the resistance of the armature, and ¢ the armature leakage
EMF. Then, if + be the instantaneous value of the current, we
have by Ohm’s law,

. e—v—g
ST Y )
and therefore e=Ri+e +.

Hence squaring and taking mean values we get
E*=RA*+ E2+V*+2RE A cos ¢,
+ 2RV A cosy’ + 2E,V cos ¢,,

where the capital letters denote effective values, and ¢,, ¢y and ¢,
are the phase differences between £, and 4, V and 4 and between
E, and V respectively. K, Acos¢, is the power expended in
hysteresis and eddy current loss in the alternator, and cos’ is
the power factor of the external circuit. If we neglect the losses
in the armature, we get ¢, equal to ninety degrees, and we can
write LwA for ¥, where L is a constant. If we make the further
assumption that &;, 4 and V are in one plane, then we can write
90° — " for ¢,. On substituting these values the equation
reduces to

B P AR R AR, R @),
where a = R+ L’w?
and h=Rcosy' + Losin ¢’
=acos (Y — 1),
where tan oy = %

Now, for given values of 4, » and E, the equation (i) represents
an ellipse. If we take A as abscissa and V as ordinate, we may
write (i) in the form

a*a? + 2hay + yF = B2

ol -

-

L e st AT e L o W
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Solving this equation for y (the voltage) we get
y=—axsiny’ +VE?—a?cos? .

As both z and y must be positive, we need only consider the part

of the ellipse lying in the first quadrant. When 4 is negative, -

that is, on a condenser load, y attains a maximum value £/cos "
when z is — Etany’. If 4 be a large angle, we see that the

potential difference between the terminals may be very high on a =

condenser load.
On a very inductive load v is ninety degrees, and the equation

becomes

z+y=L.
This is the equation of the line BC shown in Fig. 30. On a con-
denser load the equation is

z—y=2F,
which represents a line through B at right angles to BC. On a
non-inductive load we should get the circle BDC, and on a load
which gave a leading current, the ellipse BEC. In many cases
the curves obtained by experiment are very like those shown in
the figure.

When the reluctance of the field magnet circuit alters periodi-
cally, as, for example, when there are polar projections

eane ¢ orslots in the armature, an alternating EM.F. is seb
the exciting  yp in the field magnet coils due to the periodic
variations in the flux. If the alternator is one which

has a polar projection on the armature corresponding to every
field magnet pole, the frequency of the alternating component of
the current in the field magnet windings will be twice as rapid as
the frequency of the alternating current in the armature. This
alternating current component is rarely large owing to the high
inductance of the field magnet windings, and does not vary much
when a non-inductive resistance is put in series with these windings.
The impedance of the field magnet coils is practically proportional
to the speed of the armature, and so also is the EM.F. set up in
them. We should therefore expect that the amplitude of the
alternating current component in the exciting circuit would be
independent of the speed of the armature, provided that the
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direct current component in the windings of the field magnets were
maintained constant. This is found to be the case in practice.

In machines which have a large armature reaction, the periodic
magnetising forces due to the currents in the armature windings
may give rise to large alternating current components in the
exciting circuit of the field. The period of the variation of the
flux in the field magnets is twice as great as the period of the
alternating current supplied to the external circuit of the machine.
The variation of the flux in the field magnets gives rise to losses
due to hysteresis, eddy currents and the heating of the field magnet
coils by the alternating current component flowing in them. This
alternating current component produces the same heating effect
on the coils as it would produce if the direct current component
were zero. For example, if the effective value of the direct
current component is 40 amperes and the effective value of the
alternating current component is 9 amperes, the heating loss will
be R (92+40°) where R is the resistance of the circuit, and the
reading on an ammeter in the circuit, therefore, will be 41 amperes
(see Vol. I, p. 67).
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three phase machine. Characteristic curves. Oscillograph records.
Two phase machines. Armature current on no load. Tests of a two
phase machine. Characteristic curves. Oscillograph records. Tests of
a large three phase generator. Load losses. The efficiency of the exciter.
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W saw in Volume I that the armature of a three phase

machine has three windings, which may be connected
Three phase  ojther in star or in mesh fashion. In a two phase

machine we can have two windings which are quite
separate from one another, or we can have four windings which
may be connected in star or in mesh. We shall only consider
three phase and two phase alternators, as these are the only
practical forms of polyphase machines. In a three phase machine
there are, when the armature is the stator, three terminals, and,
when the armature i1s the rotor, three slip rings from which the
alternating current is collected ; just as in a single phase machine
we have two terminals or two slip rings. In a two phase machine
there are generally only three terminals or slip rings, when the
armature has two separate windings, and a three wire system of
distribution is used (Vol. I, Chap. x11); in all other cases there
must be four terminals or slip rings. We shall first consider three
phase machines. In Figs. 31 and 32 are shown the simplest forms
of mesh and star windings for three phase armatures. The three
circles in the centre of Fig. 81 represent the slip rings. The slip
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rings are mounted on the shaft and insulated from it. The current
is collected from them by means of copper or carbon brushes. The
arrow heads show the directions of the currents in the various
conductors. The conductors are drawn radially so as to make the
diagram clearer, but they are really parallel to the shaft, and are
placed in slots in the circumference of the armature. The armature

Fig. 31. Three phase armature with bar winding mesh connected.

is built up of thin circular iron sheets placed at right angles to its
axis. These sheets are insulated from one another, and are pressed
together between end plates, the- whole being firmly keyed to the
shaft. Insome machines the armature rotates, but more commonly
the field magnets rotate. In the latter case no slip rings are
required for the alternating current, but slip rings are required to
bring the direct current to the exciting coils of the rotating field
magnets.

5—2
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In Fig. 32 the windings are indicated for a machine which has
a star connected armature. It will be seen that the winding is
practically identical with that shown in Fig. 31.

Fig. 32. Three phase armature with bar winding star connected.

Let us first consider a machine with a mesh connected armature.

Effect of star
or mesh con-
nection of an
armature on
the output of
a machine.

When the load is balanced, the currents in the ex-
ternal mains will each be equal to 44/3 (Fig. 33),
where 4 is the effective current in a phase winding
of the armature. This follows because we can regard
the current in the main Bb, for example, as the

resultant of the currents flowing in AB and OB respectively.
Now we know (see Vol. I, p. 228) that the currents in CB and BA
differ in phase by 120 degrees, and therefore the currents in the
directions CB and AB differ in phase by 60 degrees. It follows
that the current in the main is the resultant of two currents each
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~ having an effective value A, the phase difference between them
being 60 degrees. Hence the current in each main is A/3.
If V be the effective voltage between any two of the slip rings
of this machine, the effective voltage between the mains will also
be V. We can show in a similar manner that the currents in
each arm of the balanced load abe (Fig. 33) are each equal to 4.

A

B b

Fig. 33. Mesh connected armature 4BC. When the load is balanced the current
in each main is »/3 times the current in an armature winding,.

If the mains be very short so that the ‘ voltage drop’ along them
1s negligible, the voltage across the arms of the load will be V.
The power given to the load therefore is 3V A cos+r, where cos
is the power factor of each arm of the load. When the load is
non-inductive the power given to it is 3VA.

A a

B b

Fig. 34. Star connected armature ABC. When the load is balanced the voltage
between any two of the terminals 4, B, and C, equals /3 times the voltage between
A and S, where S is the centre of the star.

A diagram of the armature when it is star connected is shown
in Fig. 34. In this case the current in the main is the same as
the current in a winding, but the effective voltage between the
slip rings on a balanced load will now be V4/3 since V is the
potential difference between A4 and S (Fig. 34). The output of
the machine is 3 x V'4/3 x (4 cosr)/4/3, that is, 3V A cosy. It
is therefore the same as when the armature is mesh connected.

The maximum output of a machine is limited either by the
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rise of temperature in the armature or by the maximum current
the armature windings can carry. Now, whether the armature be
connected in star or in mesh, the output is 3VA cos, and is
limited by the maximum permissible value of 3RA? in each case.
Thus, if V and cosyr be constant, the maximum output in the
two cases is the same. We must note, however, that the voltage
between the mains with the star connected armature is /3 times
the voltage with the mesh connected armature.

We shall see in the next paragraph that local currents, which
will lower the efficiency of the machine, may be generated in a
mesh connected armature. In this respect only is the mesh con-
nection inferior to the star connection. For equal power and
voltage we require 4/3 times the number of windings when the
armature is mesh connected compared with what is necessary
when it is star connected. In the latter case, however, the cross
section of the wire needs to be /3 times as great, and thus the
labour involved in winding the armature is much the same in
the two cases.

It is to be noted that, with the mesh winding, if we start from
Current in a 80y slip ring 1, we get metallic connection with the
mesh con- slip ring 2 through the winding (1, 2), then with
nected arma- L9, g
e i 3 through the winding (2, 3), and finally back again
o to the first slip ring through the winding (3,1). The
three windings thus form a closed metallic circuit, and, if the three
E.M.F.s are not balanced at every instant, we get a local current
circulating in the windings.

If the slots are arranged symmetrically and if the EM.F. in one
winding be f(t), then, if the resultant EM.F. round the circuit of
the armature coils always vanishes, we must have

f(t)+f(t+%)+f(t +2§) =10
Solving this equation (see Vol. I, p. 231) we find

FO=Xsin (2054 T) oo @),

where X and Y are functions of ¢ that do not alter when
t+ T3, t+ T/2 or t+27/3
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is written for & An example of such a function would be
sin 6 g;r,—t If f(t) be a sine curve or any other of the curves
given by the equation (i), there will be no currents in the armature
at no load.

If the EM.F. wave f(£) generated do not satisfy the equation (i),
the resultant EM.F. ¢ (¢) will be given by

=5 +7 (t+3) +7 e+ %),

and hence
¢>(t+6T)_f<t+ )+f(t+ >+f(t+5g)
=—fu+ ) —f@O-f(t+3 )
—— 4

Therefore
¢@+§)=—¢@+ 5)= .

Hence the frequency of the circulating current is at least three
times as rapid as the frequency of the alternating current given
out by the machine. Since the inductance of the armature is
always high, the loss due to this cause is generally only appre-
ciable in machines which produce low frequency currents. In
Fig. 35 ‘a’ is the mesh voltage of a General Electric ‘A.T’
machine at no load. ‘b’ is a curve obtained graphically by
finding the resultant of three curves similar to ‘e’ and having
time lags of 0, 7'/3 and 27'/3 respectively. A very small change
in the shape of ‘@’ may produce a considerable change in the
shape and magnitude of ‘b’

We shall now consider how to connect the coils of a star

Comnection of  Wound armature so as to get single phase currents.
the armature  Jf the windings X, ¥ and Z (Fig. 36) be separated

of a three
phase machine from the common junction and connected as in
SO as to give a .
single phase Fig. 36, the phases and the magnitudes of the com-
currents. o

ponent effective voltages «, ¥ and z may be represented

by lines as in the figure. When «, y and z are each equal to V, the

L ™ | 1] Ve

R . . .- T T
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armature windings can carry. In the first case, let us suppose
that the armature, when it has attained its highest permissible
temperature, can radiate an amount of heat which is equivalent
to H joules per second. Let A4, be the largest effective current
which it is safe to take from each winding. Then, neglecting the
iron losses, we have

H=3RAZ,

where R is the resistance of one winding. If V7 be the potential
difference between the terminals, the output is

3VA;cos{yr=14/3 V«/%cos«}r.

When it works as a single phase machine (Fig. 36), the output is
2V A, cosy, and
H=3RA?

and therefore the output equals

2 H 2 L e JH
3 V\/Rcos\b=§.~/3V\/—RCOS\[r=l15V«/Rcosqrnearly.

When the armature is connected in the manner shown in Fig. 34,
the output is, therefore, only two-thirds the output of the machine
when giving three phase currents.

Sometimes single phase currents are obtained by merely
loading one phase of the three phase generator. If we assume
that the maximum current the armature winding can carry is 4,

P —

then the output is 4/3 VA cos+, as compared with 2VA cos+yr

when the machine is connected as in Fig. 34.
If, however, we assume that the output is governed by the
heating of the armature, we have

H=2RA?
and the output =4/3VA cosy

3 H
= \/Q V\/R oS
= 1'22V«/% cos 4y nearly.

In this case the current in each of the active windings is about
twenty per cent. greater than when connected as in Fig. 36, and
the output is about six per cent. greater.
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A method of connecting a three phase mesh connected armature
so as to get single phase currents is shown in Fig. 37. It will be
seen from the diagram that the problem is practically identical
with the preceding one. Thus, if we take the heating of the
armature as the governing factor, the output as a single phase
machine is only two-thirds of the output as a polyphase machine.

A B

Fig. 37. Armature with windings in ‘mesh,’ connected so as to give single
phase currents. Resultant voltage between 4 and B is 2V, where V is the effective
voltage generated in each winding.

A conventional method of representing the windings in a three
{ phase armature is shown in Fig. 38. It will be seen
Diagram of a
three phase that there are three slots on the armature per pole,
winding. -
or in other words one slot per pole and per phase.
Only the end connections are shown, the armature conductors being
perpendicular to the plane of the paper.

Fig. 38. Three phase alternator with rotating field. Currents in phase with
the armature electromotive force.



%6 - ALTERNATING CURRENT THEORY [cnm.

If the current be in phase with the armature electromotive

force, then, with the field magnets in the position

Armature

: shown in the diagram, the currents in the wires
reactions.

marked 2 will be zero and the currents in the wires
marked 1 and 3 respectively will be equal in magnitude but
opposite in sign. The effect of these currents is to produce both
a direct and a transverse magnetisation of the field.

Fig. 89. Three phase alternator with rotating field. The directions of the
currents an eighth of a period later than in Fig. 38,

The position of the field magnets, an eighth of a period later,
is shown in Fig. 39. The arrow heads indicate the directions of
the currents when they are in phase with the armature electro-
motive forces. It will be seen that transverse and direct magnetising
effects on the field are still being produced. In Chapter 1, p. 38,

formulae were found for the mean demagnetising effect of the com-

ponent of the current which is ninety degrees different in phase
from the armature electromotive force, and formulae were also
found for the mean ampere-turns B8N, A4 cosr, due to the com-
ponent of the current in phase with the armature electromotive
force tending to magnetise the field transversely. When we are
considering a three phase armature, we can add the three mean
magnetising forces together, and so, if the load be balanced, the
formulae (p. 47) become

442 a

™ b

. )
N, A sinrsin — sin —
! L4 2a 2a

alV,Asiny=3
b

b .
sin — ,

g 4
2a 2a

= 1720 g

N, 4 sinrsin

a .l b
and BN, A cos«]r=172OEN1A cos 4 sin %(1—005 %),
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where 2, is the number of armature conductors per pole and
per phase, or in other words N, is the number of armature turns
per pole and per phase, and the other symbols are defined as on
pp- 34 and 38,

To illustrate the method of applying these formulae, let us
first consider the winding illustrated in Fig. 38. In
this case the breadth of a coil b” equals the pitch of the
poles a, and hence the formulae become

Illustrations.

alN, A4 sinypr=1720 % N, A sin+rsin ;_r_;) /

a b
and BN, A cos¢=1'72OI;N1A cos«[r(l — cos ;T_a)

Fig. 40. Three phase alternator with rotating field having two slots
per pole and per phase in the armature.

Let us next consider the winding illustrated in Fig. 40. In
this case we have two slots per pole and per phase, and the breadth
of the inner winding of a coil is 5a/6 and of the outer 7a/6. Now,

’

for the inner coil, sin 7272 equals sin 51 5 that is, sin 75°, and for the

7

outer coil, sm% equals sin Z; which is also equal to sin 75°.

Hence we get

alN. 4 sinyr= 3%—'\/—2%11\’111 sin 4 sin ;Igsin75°

16612 5 N, A sin 4 sin ;T—(Z;,
and BN, 4 cosyp=1661 g N, A cos yr (1 — CoS ;LS) ’
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If we have three slots per pole and per phase, the breadth
of the middle winding of a phase is @ and the breadths of the
inner and outer windings 7a/9 and 11a/9 respectively. We
have, therefore,

alV, A4 sinr= 34U\/ZZNASID‘\PSIH—£
sn7—+ 9 117
n g +5inyg +sin g

3

@ . )
= 1'6535N1A sin 4 sin %0
b
and BN, A cosp=1 6535 NIA cos Y (1 — oS 2—)

In the following table the values of a and /3, in this case, are
calculated for various values of b/a.

SRS
f—

09 0-8 0-75 07 0-65 0-6 0-55 05

a 1653 | 1827 | 1:963 | 2:035 | 2-105 | 2-169 | 2-229 | 2-285 | 2-887

B 1653 | 1-561 | 1-425 | 1-361 | 1-291 | 1-215 | 1-135 | 1-053 | 0-968

In practice a is often taken as being equal to 1'54/2, 7.e. 2:121.
This value would correspond to a value of b/a lying between
065 and 0°7.

In a 1400 kilovolt ampere Creusot alternator the armature has
two slots per pole and per phase and has 6 conductors
in each slot. Hence the number N, of turns per pole
and per phase will be 6. When a equals b and 4 is 156 amperes,
we find that

Examples.

oV, A sin = 1-661 %NlA sin 4 sing—s
=1555 sin,

and BN, A cos=1555 cos .
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If there are n turns on each armature coil, then, N, will equal
8n/16, that is, n/2.

The formulae can be applied even when the armature winding
is complicated. The effect of the various windings of the armature
shown in Fig. 43 in producing the potential differences between
the slip rings will be understood from the diagram in Fig. 44,

1

Fig. 44, Diagram of the e.M.F.s in the three phase alternator shown in Fig, 43,

where the manner in which the potential differences combine
vectorially is indicated. Since there are ten poles and twelve
armature coils the number of armature coils per pole and per
phase will be 4/10, and thus, if there are n, turns per armature
coil, N, will equal 2n,/5.

The electromotive force, on open circuit, at the terminals of an
armature coil of a three phase machine, can be cal-
The clectro-  Gulated in the same way as the EMF. for a single
g phase machine. With our usual notation, if there are
N’ bars joined in series in one winding, then, the

voltage V" at the terminals of the coil is given by (p. 16)

V= QfN/Z(I)A b KO
m

In order to find V, therefore, we must know the shape of the
wave of electromotive force, and this can only be predetermined
when we know how the flux in the air-gap is distributed.

If we make the assumption that the problem can be discussed
with sufficient accuracy, as if it were in two dimensions, then
the distribution of the flux in the air-gap can be determined

R. II. 6
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sensitive galvanometer. The extremity of one of these wires
being placed on P, for instance, we move about the extremity of
the other on the tinfoil until we find a point where there is no
deflection of the galvanometer. This point will obviously lie on
the equipotential line through P. Similarly we can easily find
other points on this equipotential line. In particular, we plot out
the equipotential lines AL and BM that pass through the points
A and B on the armature. The stream lines cut the equipotential
lines at right angles, and the edges of the tinfoil will obviously
be stream lines. Now, it is easy to see from the mathematical
equations that the equipotential lines in the electrical problem are
the lines of force in the corresponding magnetic problem, in two
dimensions, and the lines of equal magnetic potential in the latter
problem correspond to the stream lines in the former.

When the current is maintained constant, the number of equi-
potential lines which pass between any two points in the tinfoil is
proportional to the difference of potential between these two
points. The P.D. between any two points can be determined
readily by the potentiometer method indicated in the diagram.
RS is a long wire stretched between the poles of the battery and
points p, ¢, I and m are found on it which are at the same potential
as the points P, @, L and M. We see that the ratio of the
number of lines of force, in the magnetic problem, between L and
M to the number of lines of force between P and @ equals the
ratio of the P.D. between L and M to the P.D. between P and Q,
and thus is equal to the ratio of the length of pg to the length
of Im. We can find in this manner the ratio of the flux between
any two points on the polar surface to the flux between any
other two points, aud thus we can map out the flux density.
We can also map out in the same way the flux density at all
points on the air-gap, and so we can construct the flux curve. It
has to be remembered, however, that we are making the assump-
tion that the permeability of the iron in the armature and pole-
piece is infinite. We also neglect the effect of hysteresis in
distorting the field when the rotor is in motion.

To find the reluctance between the armature and the pole-piece
we proceed as follows. If R, denote the resistance to electric flow
~ 1n the tinfoil between the equipotential lines AL and BM and R,

6—2
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denote the resistance to electric flow between LM and A B, when
AL and BM are stream lines, then, if p be the resistivity of the
tinfoil and its thickness be unity, we have

Ry. .Rb = p2.

Now the equipotential curves passing through P and @ are
practically straight lines passing through these points. Thus if
the length of PQ be a and the length of CD be ¢, we have

oti=V:_n-n

By, p(afe)’
where C' is the current in the tinfoil and »,, v,, V;, and V, are the
potentials at P, @, L and M respectively. We have, therefore,

_aV, =7,
R”‘PE v, — U,
c v —0 c
Hence Rg:P&T%—Iz:pz_t'%'

Now the general formulae for resistance and reluctance are
R=3p!, and @=32,
& =

respectively. Thus, when we know the resistance to the flow of
electricity, we can find the reluctance in air by writing p equal to
unity. We find therefore that the reluctance, per unit length
parallel to the axis, of the pole is ¢.pg/a.lm, and thus

SRR
%@g =a b im’
where ®, is the reluctance of the path of the flux, leaving the
pole IV, which is linked with one of the adjacent poles, and b is
the breadth of the pole parallel to the axis of rotation.

When we know approximately the density and the distribution
of the flux in the air-gap, both of which can be found by the
above experimental method, the shape of the wave of the open
circuit E.M.F. when the armature has a simple bar winding can be
predetermined. We can then find V' from this wave by the con-
struction given in Vol. I, p. 69, When the distribution of the
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flux varies appreciably with the relative positions of the armature
and the pole, then ®, is not a constant, but the problem, although
much more difficult, can still be solved by the experimental method
described above.

When the armature of the machine is star wound, the shape of
the wave of P.D. between a terminal and the centre

The shapes of - 2 ool .
B nd of a star winding is, in general, different from the
meshvoltage  gshape of the wave between two terminals. If ¢, e,
and e, be the instantaneous values of the P.D.s
between the terminals 1, 2 and 3 and the centre of the winding,
and if ., v,.; and 2,., be the P.D.s between the terminals, we have

V=€ —6€, Vp3=6€—26, V3,=6—¢.

On open circuit e, &; and ¢; can be calculated when the distribution
of the flux in the air-gap is known. Let us suppose that the
machine is symmetrical, so that we may write

a=f(t), e=f(t+T/3) and e¢=7f(t + 27/3).
Then, we have
va=F () = f (6 + TJ3) = F (&) +1 (t = T/6).

We can, therefore, easily find v, graphically by adding together
the ordinates of two periodic curves each equal to the curve f(¢)
representing the star voltage and one having a time lag relative
to the other of one-sixth of a period.
Let us suppose that
ate+e=0,

and that V is the effective value of each of the star voltages. In
this case their vectors will be inclined to one another at angles of
120 degrees, and so the effective value of v, will be Va/3. Let
us also suppose that f(f) represents a symmetrical alternating wave
(see Vol. I, p. 153), so that we have

FO=£(5-1)=-rc-o.
Then since

v1.2=f(t)+f<t—%1),
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The upper curve in Fig. 46 is the mesh voltage wave of a three
phase generator (Oerlikon, type 6065) and the lower curve is the
star voltage wave of the same machine. The wave is not sym-
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Fig. 46. The upper curve is the mesh voltage wave of an Oerlikon three phase
generator (type 6065) and the lower curve is the star voltage wave of the same
machine. The upper curve can be obtained by adding together two curves similar
to the lower one and having a time lag of 60 degrees.

metrical and so the above formula for the ratio of %,, to k, does
not apply. It is however approximately symmetrical, and as 4,
is small compared with 4, we see that k,, will be approximately



88 ALTERNATING CURRENT THEORY [CH.

equal to V3k/2. We have seen above that the upper curve,
which is sometimes called the compounded wave of EM.F., can
easily be constructed from the lower one.

The effects of the transverse magnetisation of the field by the
armature currents on the shape of the potential

The potential . 3 s
s difference wave across the terminals of the machine
e rcuit, re conspicuous in the P.D. wave shown in Fig. 47.

This is the shape of the wave of the mesh potential
difference of an Oerlikon three phase generator when working on

AN
P4
el

Fig. 47. The shape of the wave of the mesh potential difference across the
terminals of a three phase generator (Oerlikon, type 6065) on a non-inductive load.
Note the distortion due to the cross magnetisation of the field.

a non-inductive load. In this machine the cross magnetising
effect of the current in the phase winding in which the maximum
electromotive force is being developed is large. In Fig. 48 the
P.D. wave of the same machine when working on an inductive load
is shown. It will be seen that the wave is nearer to a sine wave
than when the machine is working on a non-inductive load.

e L

M p— v
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1

W\

AN

Fig. 48. The shape of the wave of the star potential difference of a three phase
generator (Oerlikon, type 6065) on an inductive load.

In Fig. 49 the curve 4 is the open circuit characteristic of a

400 kilovolt ampere generator with a mesh connected
aducive ha-  armature. It is evident from the figure that the iron

in the field magnet windings is saturated when
the exciting current is large. In small machines, owing to the
large air-gap, this characteristic is often very nearly a straight
line. The curve B gives the characteristic when the machine is
driving an unloaded synchronous motor, the field of the motor
being only feebly excited. In this case, the current is nearly
wattless, and is lagging by a large angle behind the applied
potential difference. The current is kept approximately constant
and the field excitation of the alternator is varied. The curve B
obtained is similar to the corresponding curve for a single phase
machine, and it can be utilised in a similar manner to find the
leakage electromotive force of the armature. The curve C is
obtained by over exciting the field of the synchronous motor, so
that it acts like a condenser, and we have a wattless leading






1] BLONDEL'S TEST 91

curves obtained in this case. The following diagrams and data for
a small three phase machine were obtained by André Blondel and
will well repay study.

The armature of the three phase machine on which the ex-
periments were carried out is star connected, and
Tests of a 3 Ml .
three phase  the full load current in the windings is 9 amperes,
e pite the pressure between the slip rings being 110 volts.
The output of the machine on a balanced non-inductive load is
therefore ¥/3 x 9 x 110 watts, that is 1'7 kilowatts. The following
are the principal mechanical data.

Number of field magnet poles ... 4.
Eieatof polarface. - n. o 100 square centimetres.
Diameter of armature ............ 310 mms.
INumber of slots ©......0....000 54.
Length of slots ..................... 110 mms.
Depth of slots  ....oeeveiniiinnnnn, 20 mms.
Greatest breadth of teeth ......... 11 mms.
Number of conductors per slot ... 6.
MO RTINS erirs o o i o ol s sideiis s 3o s o5 3 mms
Revolutions per minute ............ 1350
BIFCGUenioy: e ou e Srvn oo savessivie 45

The characteristic curves given in Fig. 50 were obtained in the
usual manner, and their general shapes are in agree-
ment with the curves obtained from first principles
in Chapter 1. The curve 11 is the open circuit
characteristic, and, as it is a straight line, it proves that the iron
of the field magnets is not magnetised strongly. The short
circuit characteristic 22 is also a straight line showing that the
armature reaction is small, probably owing to the large air-gap.
The curve 33 gives the characteristic on a non-inductive load
symmetrically balanced, when the excitation is 108 ampere. It
is approximately an ellipse. The curve 44 is the characteristic
on a purely inductive load; it is indistinguishable from a
straight line. The curves 55 and 66 give the voltages between
the slip rings 1 and 2, and between the slip rings 2 and 3, or
3 and 1, for various values of a non-inductive load connected

Characteristic
curves.,



led us to think that the shapes of the electromotive force and
current waves do not vary much with the character of the load.

Valts Amperes of excitation) /|
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Amperes in exciting coils of field magnets.

Fig. 50. Characteristic curves of a three phase alternator with star connected
armature.

1. Open circuit characteristic.
2. Short circuit characteristic.
3. Characteristic on a non-inductive load when the three phases are loaded
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between 1 and 2. The regular shapes of these curves might have
i
i

symmetrically.

4. Characteristic on an inductive load when the three phases are loaded :
symmetrically.

5. Voltage of the phase (1, 2) when it alone has a non-inductive load p]aced
across it.

6. Voltage of the phases (2, 3) and (3, 1) in this case.

The following oscillograph records, however, prove that they vary
in an extraordinary manner.

L=

-

R P,
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current ¢ are given when the three phases are equally loaded.
The load in this case consisted of glow lamps, so that the shape
of the electromotive force waves is the same as that of the current
waves. The effective voltage between any of the slip rings and
the neutral point common to the three windings is 57, and the
current in each phase is 11'2 amperes. It will be noticed that C
is a pulsatory current, the frequency of the pulsations being six
times that of the alternating currents. This is due to the armature
reaction. The magnetomotive force of the current in the armature .
windings which acts on the field magnets goes through all its
values in one-sixth of a period.

C

b
e

NN L

w

Fig. 53. ¢;. Voltage wave in a phase winding of a star connected three phase
machine when working on a symmetrical inductive load.
i,. Current wave.
C. Exciting current,

The curves ¢, and ¢, in Fig. 53 show the shape of the voltage
and current waves when the machine is working on a symmetrical
inductive load. The effective value of 7, is 32 amperes, and of ¢,
24-1 volts.

In Fig. 54 the curve ¢ practically gives the shape of the
current wave on short circuit. The effective value of the potential
difference between a slip ring and the neutral point is only one volt.
The effective value of the current is 47-5 amperes. ‘The effective
value of C is 108 amperes, and the pulsations seem to be due
to two disturbing causes, the frequencies of which are 2f and 6f
respectively. This may be owing to the slightly greater demag-
netising effect on the field magnets of one of the windings.
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armature electromotive force. If we denote the current by ;

I'sin (ot — 4r), then, by the principle of two reactions, the trans-

verse magnetisation of the field will be proportional to 1 cosf

and the demagnetising force acting on the field magnets will be
proportional to Isin . The voltage of the second phase in this
case is actually greater than the voltage on open circuit. This is
due to the component I cosrsin ot of the current in the phase 1

Fig. 55. Three phase machine working on one phase only.
e,. Voltage wave of the loaded phase.
i,. Current wave of this phase.
C. Exciting current.

increasing the magnetisation of the sides of the poles nearly
opposite the windings 2. Similarly this component weakens the
flux density of the field on the other sides of the poles which are
adjacent to the windings of phase 3. In addition, the component
— I sin 4 cos wt of the armature current tends to demagnetise the
field magnets. The voltage across the phase 2 being greater than
on open circuit proves that the increased flux due to the transverse
magnetisation more than compensates for the demagnetising effect
of the lagging component of the current.
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The pulsations of the exciting current C (Fig. 55) in this case
are large, and, just as in single phase machines, their frequency is
twice that of the frequency of the alternating currents. Although
the effective value of the exciting current is 1:08 amperes, the
same as on open circuit, yet the effective potential difference
across the field magnet windings is now 95 volts, whilst on open
circuit it is only 90 volts. This is due to the alternating electro-
motive force induced in the exciting circuit by the armature
reaction.

The theory of two phase machines is practically the same as
Two phase that of three phase machines. The four armature
machines.  windings may be connected either in star or in mesh,
and either the field magnets or the armature may rotate. There

Fig. 56. Two phase armature with bar winding for a sixteen pole machine,
R. IL 7
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1s, however, one case in which there is an important difference,
namely when the armature has two separate windings as in
Figs. 56 and 57. The armature of the machine represented
diagrammatically in Fig. 56 rotates, and the effective value of the
potential difference between the two outer slip rings equals that
between the two inner rings, but differs from it in phase by
90 degrees. Hence the currents supplied respectively by the
two pairs of slip rings to two symmetrical loads will differ in
phase by 90 degrees. We may replace any two slip rings not
attached to the same winding by a single slip ring without
affecting the working of the machine. Suppose, for example, the
slip rings 2 and 3 are replaced by a single slip ring «, and let
V., denote the effective value of the volts between 1 and .
Then V.., and V., and V., form an isosceles right-angled triangle,
we have, therefore,

%= 0-7071 V..
The phase difference between V., and V., is 90 degrees, and
between V.., and V., or V,, is 135 degrees.

The electromotive forces can be calculated approximately by
the same formulae as for single phase machines, and so also can
the transverse and demagnetising forces of the armature currents.

Vl-x = V4=

Fig. 57. Developed diagram of the winding of the armature of a two phase
alternator. The winding of one phase only is shown.

In Fig. 57 a developed diagram of the winding of one phase of
a two phase machine is shown. The field magnets rotate and T}
and T, are two of the four terminals of the machine.

In Fig. 58 a coil winding for an armature is shown, consecutive
coils of one phase being wound in reverse directions. When the
coils are wound in the same directions, the connections of adjacent
coils must be reversed.
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If the armature be wound with four coils, the electromotive
force generated in each of which differs in phase by ninety degrees
from the EM.F. generated in the two coils adjacent to it, then
these windings may be connected in star or in mesh. If V be the
effective voltage generated, and A the current flowing in each

Fig. 58. Coil winding for the armature of a two phase generator. Coils 1 and 2
are wound in the reverse direction to coils 1’ and 2.

coil when the machine is symmetrically loaded, the maximum
output is 4V A, whether the coils be connected in star or mesh
fashion. When the coils are star connected, the effective voltage
V.., between adjacent mains is 4/2V, and the currents in the mains
are each equal to 4. When the coils are mesh connected, the
effective voltage V., between adjacent mains is ¥V, but the
currents in the mains are now /2 4.

If we connected the coils 1 and 3 in series and also the coils
2 and 4, we should have a two phase machine with two separate
windings. In this case the voltage V., would be 2V, and the
maximum output would be 4VA, the same as before.

If £(t) be the electromotive force generated in one phase of a
mesh connected armature, the resultant EM.F. round the
Armature  armature windings will be

mniont.” VAO) +f(t+ )+f(t+ >+f<t+

no load.
Now, whatever the shape of the wave, we have, if the north and
south poles of the field magnets are similar,

Fly=—7 (+3)

/ OFf 7 N\

3T)
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and f(t+%)=—f(t+§§).

Hence the resultant EMF. is always zero.
A slight lack of symmetry, however, in the four windings
might introduce a small local armature current at all loads.

The following tests on a two phase alternator were made by
Blondel. The two phase machine experimented on
Tests of a T
two phase  had two separate windings, and the normal current
machine: in each was 14 amperes at 110 volts, so that the full
load output was 308 kilowatts. The principal data of this
machine are given below.

Number of field magnet poles ... 4.

Area of polar face .................. 100 square centimetres.
Diameter of the armature ......... 310 millimetres.
Number of slots ...... ........c.... 52.

Length of slots...............oooeie. 110 millimetres.
Depth of slots .........ooooiiiinnn 24 millimetres.
Greatest breadth of teeth ......... 11 millimetres.
Number of conductors per slot ... 7.
Air-gap.......cooiii 3 millimetres.
Revolutions per minute ............ 1350.

Frequency ......cocoovininiiiiinnne. 45.

In Fig. 59 the characteristic curves of this machine are given,
Characteristic  and 1t will be seen that their general appearance
Eale is similar to that of the three phase curves shown
in Fig. 50.

The curve 11 is the open circuit characteristic, and is prac-
tically a straight line, showing that the iron is far from being
saturated. The characteristic 22 on a balanced non-inductive
load is approximately an ellipse, and on a purely inductive load
it is a straight line 33. The characteristics when one phase only
is loaded are shown in A4,, B,, and 4;, B; respectively. 4, is
the characteristic of the loaded phase when working on a non-
inductive resistance and 4, its characteristic on a purely inductive
load.
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Fig. 59. Characteristic curves of a two phase alternator.
1. Open circuit characteristic.
2. Characteristic on a non-inductive load when the two ecircuits are equally
loaded.
8. Characteristic on an inductive load when both circuits are equally loaded.
A,. Characteristic of the loaded circuit when the other circuit is open. The
volts of the open circuit are shown by B,. The load is non-inductive.
4; and B;. The same characteristics when the loaded phase is working on
a purely inductive load.

In Fig. 60 the shape of the electromotive force wave of this
Oscillograph ~ Machine on open circuit is shown. The ripples in
T the wave are due to the slots, and the equation to
the wave, making sine curve assumptions, would be of the form

e =K sin ot (1 + A sin 2net),

where A 1s a small fraction and 2n is the number of armature
teeth in the polar step. The effective value of the electromotive
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in the exciting current is four times the frequency of the alter-
nating current.

The shape of the current wave ¢, (Fig. 62) when the armature
windings are short circuited is approximately a sine curve. This

is due to the large inductance and small resistance of the circuits ;
in this case. For this reason the high frequency components of

the electromotive force produce only very minute currents, which
are not apparent on the resultant current wave ¢,. The effective
value of 7, is 39'5 amperes.

When one circuit is closed through a choking coil and the
other is open, the difference between the shapes of the potential
difference waves (Fig. 63) is very marked. The wave across the

To o

Fig. 63. e¢,. Potential difference wave when the first circuit is working on an
inductive load, the second circuit being open.
%,. The current wave.
e,. Potential difference wave across the unloaded cireuit.
C. Exciting current.

working circuit is very flat, and its effective value is 50 volts,
whilst the wave across the unloaded circuit is peaky and has an
effective value of 76 volts. The effective value of the current
in the choking coil is 342 amperes, and the frequency of the
alternating component of the exciting current, as in single phase
machines, is twice that of the alternating current.

In Fig. 64 the current and potential difference waves are
shown when one winding is short circuited. In this case the
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curve, we should have expected that the maximum demagnetising
forces would have occurred at the instants when the armature
current had its maximum values. Since the frequency of the
induced electromotive force in the field magnet windings is double
that of the alternating current, this induced EM.F. will have its
maximum value one-eighth of a period after the armature current
has its maximum value. The phase of the alternating current
component of C, however, will depend on the magnetic leakage
and hence, even when the current 7, is sine shaped, it would be
difficult to determine the time lags between the maximum values
of 7, and €. We see from the figure that, for the given machine,
one set of maximum values of C occur nearly at the same instants
as the maximum positive values of ¢, and the other maximum
values occur about one-eighth of a period later than the maximum
negative values of 7,.

Fig. 65. 2330 k.v.s. Caffaro Generator.

The three phase generator shown in Fig. 65 is one of several
which were supplied by the Oerlikon Company to the generating
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station of the power transmission line at Caffaro in the north
of Italy. Each generator is used in conjunction with
;:e,;s{;,f,:e a transformer immersed in oil, which is kept cool by
gr::;tor_ pipes through which water flows. One of these trans-
formers is shown in Chapter XI, and its efficiency
curve is given. The generator voltage is raised to 40,000 by
means of the transformers, and this is the voltage between
each of the transmission wires. The total weight of each
generator is 82,000 pounds, and the weight of the revolving field
system is 30,000 pounds. The output of each machine is 233
amperes at 10,000 volts, and the rotor makes 315 revolutions
per minute.
In Fig. 66 the short circuit and open circuit characteristics of
this machine are shown. The working pressures vary between
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Fig. 66. Curves for 2336 kilovolt ampere three phase generator (Oerlikon
type 6235). The machine runs at 815 revs. per minute, and its voltage is varied
from 9000—10,500 as desired.

9000 and 10,500, so that points on the load characteristics
corresponding to working values of the amperes and volts lie
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between the thick lines shown on the diagram. Parts of the.
wattless characteristics at 130 and 150 amperes are shown, and
parts also of the load characteristics when cos Y is equal to 1 and
when cos 4 is 0°75. The efficiency curve 7, in terms of the load
when the power factor is unity, is also given. When the power
factor is 0'75, the efficiency curve is practically the same, at small
loads, as the curve shown. At the maximum load on this power
factor the ordinate of this curve is diminished by about one per
cent. only. '
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Fig. 67. Curves of the losses in a 2330 kilovolt ampere three phase generator
(Oerlikon type 6235).
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The losses of the Oerlikon generator for different loads are shown
by the curves in Fig. 67. The resistance of one phase
of the armature winding is 0'19 of an ohm, and the
resistance of the windings of the field magnets is 052 of an ohm,
both being measured when warm. It should be noticed how
rapidly the copper losses in the armature increase on inductive
loads.

Load losses.

The curves showing the performance of the hundred kilowatt
The eficiency ~ Separate exciter used in conjunection with the above
of the exciter.  machine are shown in Fig. 68. The machine is
shunt wound ; the armature resistance is 00015 of an ohm and
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Fig. 68. Open circuit characteristic and efficiency curve of a 100 K.w. separate
exciter. When running at 600 revs. per minute it has an output of 800 amperes at
125 volts.

Armature resistance =0-0015 ohm.
Shint resistance=10-5 ohms.
Loss at no load =6-3 kilowatts.

the resistance of the shunt winding is 105 ohms, both being
measured when warm. By varying the resistance of the rheostat






CHAPTER IIL

Dangers from the harmonics in the E.M.F. waves. Methods of analysing
waves. Blondel’s method. Pupin’s resonance method. Armagnat’s
method. Analysis of electromotive force waves. Resonance of the first
harmonic. Resonance of the fifth harmonic. Resonance of the seventh
harmonic. Resonance of the eleventh harmonic. Interference of two
resonating harmonics. Measuring irregularities in the speed of alternators.
Causes of the harmonics in electromotive force waves. Harmonics caused
by slots. Harmonics in the E.M.F. waves of three phase machines.
Harmonics introduced by armature reaction. Annulling harmonics by
special windings. Methods of preventing the slots in the armature from
producing harmonics. References.

IN many distributing systems we have mains of high electro-
A static capacity in circuit with transformers having
angers from = £
harmonics in  considerable inductance, and the armature of the
- alternator 1itself has also considerable inductance.
We have seen in Vol. I, p. 82, that when we have a condenser of
capacity /K in series with an inductive coil whose inductance is L,
resonance of the nth harmonic in the applied potential difference
wave ensues when
LEn*(2mf)=1,

where f is the frequency of the first harmonic. In this case, very
high potential differences are established between various parts of
the circuit, sometimes causing sparks which break down the in-
sulation of the cables, or of the armature or transformer windings.
As a rule LK (27f)* is much smaller than unity, so that there is
little danger of resonance with the first harmonic. The danger
arises when there is a pronounced high harmonic. The above
formula shows that the nth harmonic will resonate with only the
1/n? part of the capacity required for resonance by the first harmonie.
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It would be dangerous to run up an alternator, which had a jagged
electromotive force wave, to its normal speed with its field excited
if its terminals were connected with mains having considerable
electrostatic capacity. There would be a serious risk of the
resonance of some of the harmonics at particular speeds. It is
therefore essential to consider the causes of these harmonics in
the electromotive force wave of the machine, and whether there
are any methods of preventing their formation. We shall first
consider methods of analysing the wave forms of alternators into
their various harmonics.

The wave form of an alternator can be found directly by means
Methods of  °f 210 oscillogra.ph, ondogr?,ph, or rheograph. We can
analysing then apply various analytical methods to analyse this
waves. . . . . .

curve into its harmonics. 1t is found, however, in
practice that owing to the irregularities in the speed of the engines
driving the alternators, etc., the curves cannot be traced with suf-
ficient accuracy, to make graphical methods useful, and so recourse
is had to experimental methods of finding the amplitudes of the
harmonics and their phases relative to the fundamental harmonie.

Let f(¢) denote the electromotive force wave of the machine,
then by Fourier’s Theorem we have

F®)=Z2A4,sinnwt+3Z B, cosnwt .c......cou.... (1)
=S VA I+ B2sin(not + $p) oeoreerennn. (2),
B,
where tan ¢p= i,

There is no constant term in the series as f(t) is a purely
alternating function. In order to find f(f) we have to determine
the amplitudes VA,2+ B,? of the various harmonics and their
time lags ¢,.

If we apply the potential difference wave we wish to analyse
to the terminals of a non-inductive resistance R, then
the current wave in this resistance will be similar to
the applied potential difference wave, since by Ohm’s
law ¢=f(t)/ R, and therefore the curves of < and f(¢) only differ in
the scale of the ordinates. Thus, if we can analyse the current

Blondel's
method.
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wave in the non-inductive resistance into its various harmonics,
we can find the corresponding harmonics in f(t). The time lags
of the harmonics in the potential difference and current waves
will be the same in the two cases, but the amplitudes in the
former case will be R times the amplitudes in the latter case.

Let the current ¢ pass through the fixed coil of an electro-
dynamometer, the reactance of this coil being negligible compared
with R, and let the current from one phase of an auxiliary two
phase alternator which produces a sine shaped electromotive force
wave pass through a non-inductive resistance and through the
moveable coil. When the speed of the auxiliary machine is
varied, we get large deflections of the dynamometer at par-
ticular frequencies. Let us suppose that the auxiliary current
is [ sin (nwt— o), then, we have

%’fjf_gz’lsm("wt—d)dt=é‘.%.[:f(t)sin(nwt—a)dt

I "
=9n (4, cosa— B, sina),
where A, and B, are the coefficients of sin nwt and cos nw# in (1).
Hence, by Vol. I, p. 66, if £ be the constant of the electro-
dynamometer and D, be the deflection, we have

2—% (4, cosa— B,sina)=k2D,.

Similarly by sending the current I cos (nwt — a) from the other
two terminals of the machine through the moveable coil we find
that

I : 2
2—R(A,,, sin a + B, cos a) = k2D,,

where D, is the new reading of the dynamometer.

Therefore

(4.2 + B2 =2Rk* (D2 + D21,

and thus the amplitude of the nth harmonic is found. We have
assumed that a remains constant during the time of taking the
readings D, and D,. It would be advisable therefore that the
auxiliary machine be connected, through a variable speed gearing,
directly with the shaft of the alternator.

R. 1L 8
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In Pupin’s method the potential difference wave, which is to be

. analysed, is applied to the terminals of a circuit con-
Pupin’s 3 ng g c & b 3
resonance  sisting of a condenser K in series with a choking coil L
method which contains no iron and the eddy current loss in
which is negligible. Pupin placed an electrometer across the
condenser K, but in practice an electrostatic voltmeter is now
more convenient. The capacity or the inductance is varied con-
tinuously, and the values of K and L for which the voltmeter
readings attain maximum values are noted. These voltmeter
readings enable us to determine the amplitudes of the various
harmonics in the potential difference wave.

Let 7, denote the nth harmonic in the current wave; then we
know (see Vol. I, p. 81) that

o On sin (nwt + ¢, — Yrn)
n= P
R {1 + (L 1 )2,,22(‘)2}

" Kn*e?) R
where an=VA4,2+ Bz
LEKn?w®—1
and tan '\ll‘n = W .

Now the amplitude of 7, is a maximum when ne VLK equals
unity, and is given by
.y Bu .
i = R’—” sin (net + ¢y).
Hence ¢ is in phase with the nth harmonic of the applied
potential difference wave and is a simple sine wave.
If e, denote the nth harmonic of the potential difference wave
at the terminals of the condenser, then

1.,
e"::Kf@n dt
2

=~ s €08 (not + ¢n)

1fng

R

a, cos (nwt + ¢,).
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Therefore, if V,, be the effective value of e,, we have

Lnwa,
Vn a gl R v2 b
and a, = M -
Lne

Now, if R be small compared with Lo, the amplitudes of the
other harmeonics in the applied P.D. wave are very small compared
with V, when n equals 1/2wfVLK. Hence V, practically equals
the reading of the electrostatic voltmeter, and thus a, can be
found. The amplitudes of the other harmonics are found in the
same way. It is to be noted that this method does not determine
the phase differences of the various harmonics.

Armagnat uses an oscillograph instead of an electrostatic
voltmeter. In this case we can easily arrange to get
Armaghat's  a picture of the potential difference wave and of its
resonating nth harmonic on the screen at the same
time. We arrange a condenser in series with a choking coil and
find the current wave in the circuit by means of an oscillograph.
The wave of potential difference is found by means of a second
oscillograph the circuit of which, in series with a large non-
inductive resistance, is placed in parallel with the circuit of the
first oscillograph, which is in series with the condenser and the
choking coil. Exact resonance ensues when the amplitude of the
nth harmonic, shown by the vibrations of the mirror of the first
oscillograph, has its maximum value. If the oscillograph be
standardised so that we know the value of the current which
produces the observed maximum deflection, we can find a,, for
a, = RI, nearly, where R is the combined resistance of the oscillo-
graph circuit and of the choking coil. The observed current is
practically equal to 1,.

Again, since there is resonance, ¢, and e, are in phase with one
another. By noting, therefore, the angle of lag, between 7, and
the applied potential difference wave on the screen, we can find ¢,.
We have assumed, hitherto, that, when resonance ensues with a
particular harmonic, the other harmonics produce currents which
are negligible in comparison. In many cases this assumption is

8—2
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not permissible. We shall now find the values of the other
currents when there is resonance of the nth harmonic. In this
case, we have

no VLK =1,
and since
oma Anim sin {(n + m) ot + Gpim — Vnim}
m e R 1 2(n + m) )’
{1+(L_K(n+m)2w’~') R? }

we have
o (n+m) dysm
n+m {(,n T m)z R2 +’ (mz L 2mn)2 L2w2}}‘

In practice, the interference of the first harmonic is usually
much the most troublesome. In this case,

= &
TR+ (n2— 1) Lre?}t’
while I, = %

Hence the greater the ratio of Le to R the smaller will be the
effect of this interference. It is therefore important to arrange
that the resistance of the resonant circuit shall be as small as
possible. The minimum value of this resistance, if the applied
voltage cannot be varied, is limited by the maximum permissible
readings of the oscillograph. The presence of harmonics other
than the nth has generally only the effect of producing a slight
curvature of the median line without appreciably altering either the
amplitude or the phase of the nth harmonic. This will be seen in
Figs. 70 and 71 below. Sometimes however nodes and loops are
produced (Fig. 73).

Again we have

(L—m)(n+m)w

g (m " mn ) E
y m+n) B

When Lw/R is large, it will be seen that Yo, is practically
equal to 4+ 90 degrees when there is resonance of the nth harmonic
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if m be positive. If m be negative, so that n+4 m is less than n,
then V. m will be nearly — 90 degrees.
Suppose that a small error is made in adjusting the resonance
so that
LK —1=g¢,
where ¢ is a small fraction, then, in this case

_a, sin(not + ¢, —Y,)

=R - = ){a
{ t Ko B

A (ﬂi%‘u’_‘h sin (nwt + ¢, — ¥,),

€

and tan yr, = KnoR
These formulae show that, if the regulation of the resonance is
not quite exact, both the amplitude and phase of the nth harmonic
are affected. It is necessary, therefore, that the variation of LK
be done in a manner that is practically continuous. A variable
inductance of the Ayrton and Perry type is suitable, or a large
drum on which flexible wire can gradually be coiled so as to in-
crease continually the value of the self-inductance of the circuit.

Unless the speed of the alternator is almost perfectly constant
it is practically impossible to photograph the resonance curves, as
a slight variation of speed makes the resonance no longer perfect.
Also, the greater the ratio of L to R the more difficult it is to get
exact resonance. Hence it is sometimes necessary to increase the
resistance of the resonant circuit so as to diminish the effects of
the irregularities in the speed of the generator.

The following experimental analysis of an electromotive force
. wave was made by Armagnat. The machine ex-
electromotive  perimented on was a small rotary converter, with two
force waves. . g o o o - .

distinct windings on its armature, so arranged that
the applied direct current potential difference was equal to the
effective value of the alternating voltage. The pressure of the
direct current supply circuit was unsteady, and, owing to this
cause, it was almost impossible to get photographs of the curves
at the moment of exact resonance. The frequency of the alternating
current was about 26.

-
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In Fig. 72 the eleventh harmonic is nearly in resonance, and
the interference of the first harmonic is now inuch
Resonance of )
the eleventh  less. In this case, the values of I, K and R were
o 0240, 063 and 13 respectively and the approximate
values of a,, and ¢,, are 357 and —m. The variations of the
angular velocity of the machine are now in evidence, and the
amplitude of the curve ¢ is continually varying.

The curve ¢ shown in Fig. 73 illustrates the curious effect
LA produced by the interference of the eleventh and
two resonating thirteenth harmonies.
pEacice: The values of L, K and R which produced this
effect were 0106, 0°90 and 181 respectively. By this experi-

Fig. 78. The thirteenth harmonic interfering with the eleventh harmonie.

mental analysis Armagnat finds that the equation to the curve e
1s approximately of the form
e = 6500 sin wt + 136 sin 5wt + 75 sin (Tot + 37/4)
+ 357 sin (11et — 7) + 90 sin 13wt.

The electromotive force wave contains other harmonies, the
seventeenth for example, but their amplitude is quite negligible
when compared with the amplitudes of the harmonics given
above.

Resonance methods can also be applied to measure irregu-
larities in the speed of an alternator. If, for example,

Measuring . 7 ) .
irregularities 111 AN oscillograph we suppress the displacement of
% the speed  the spot qf light in the direction of the time axis we
get a luminous straight line. The length of this line

is proportional to the amplitude of the wave of current passing
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through the oscillograph. If this luminous line be primarily due
to a resonating high harmonic of the electromotive force wave, the
variations in its length will indicate slight variations in the speed
of the machine. Now if we let it fall on a strip of sensitive
paper wound on a drum which is made to move synchronously
with the axis of the alternator, we get a trace on the strip the
breadth of which is proportional to the speed of the alternator.

If we have an irregular distribution of the magnetic flux inm
the air-gap of an alternator, then, since the electro-
gauses oL ¢ motive force is due to the armature conductors being
glectromotive  cut by or cutting lines of force, it is obvious that the
EM.F. wave will be irregular. In order, therefore,
that the electromotive force wave on open circuit may be a sine
curve it is necessary that the distribution of the flux density
round the air-gap at every instant follow the harmonic law. With
smooth core armatures this can be attained approximately by
making the pole pieces of a suitable shape. In modern alternators
the field magnets are of cast steel, but the pole pieces are
laminated and are cut back so that the distribution of the flux
in the air-gap is often approximately sine shaped.

When: there are slots in the armature it is evident that the
flux density in the air-gap cannot follow the harmonic law, and so
in this case we should expect to find harmonics in the EMF. wave.
Also, when an alternator is working on a load, the reaction of the
currents in the armature will distort the field, and harmonics will
be introduced into the electromotive force wave of the machine.
This latter effect could only be got rid of by constructing a
machine with negligible armature reaction. We shall first find
the order of the harmonics introduced into the electromotive force
wave by the slots in the armature.

Let us consider the case of a polyphase alternator, the field

. magnets of which rotate. Let us suppose that the
Harmonics . J.

caused by armature has slots so that there will be a continual

Se variation of the reluctance of the air-gaps as the field

magnets rotate. If there are n slots in the polar step, then,

during the time that a point on the circumference passes over the

B § O
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nth part of this distance, the flux will go through all its values.
This time is the 2nth part of the period of the alternating current.
Now, if 47®/10 be the reluctance of the path of the field flux, we
have, on open circuit,

n'C

®’

where @ is the flux traversing the path and »'C’ the ampere-turns
of the exciting current producing this flux. Since ® fluctuates
with a frequency 2n/T, ® will vary, and an electromotive force will
act on the exciting circuit, inducing in it an alternating component.
The effect of this induced current is to diminish the amplitude of
the variation of & from its mean value ®,,. It has no effect on
the frequency 2nf of the fluctuations of ®, where f is the frequency
of the alternating current. We may therefore write

D =D, {1+ eF (2not)},

where F(2not) is a periodic alternating function the maximum
value of which is unity, and e is generally a very small fraction.

Now, if ¢ be the instantaneous value of the flux embraced by
an armature coil, we can write

¢="F (wt) P
=F, (ot) D,y {1 + eF (2not)}.
By Fourier’s Theorem we may write
F (wt)= 4, sin (0t — a;) + A, sin (Bwt — ;) + ...,
and ¥ (2not) = B, sin (2net — B;) + B;sin (6nwt — B;) + ....
Hence a typical term in the series for 2®,, F, (ot) F(2not) is
2®,, A, By sin (pot — a,) sin (¢2nwt — B,)
=®,, 4,8, cos {(2ng — p) wt + a, — B}
— ®p Ay By cos {(2nq + p) ot — ap — By).
The orders of the harmonics in ¢ due to this typical term are
therefore

b=

. 2nq+p and 2ng—p.

Now the electromotive force is proportional to the rate at
which ¢ varies with the time, hence the order of the harmonics
in the electromotive force wave will also be 2ng+p and 2ng—p.
Therefore the lowest harmonics due to the slots which are
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introduced into the electromotive force wave of a polyphase
machine on open circuit are 2n+1 and 2n—1 respectively. 7
The same reasoning applies also to single phase machines on

open circuit, the lowest harmonics introduced by the action of
the slots being 2n—1 and 2n+1.

The lowest possible orders of the harmonies introduced into

L the electromotive force waves of three phase machines
Harmonics in

the E.M.F. can easily be written down by the above formulae.
waves of three . . .
phase Consider, for example, a three phase machine having
machines.

one slot per pole and per phase, and therefore having
three slots in the polar step. The lowest harmonics introduced by
the action of the armature slots will be the (2 x 3 —1)th and the
(2 x 3 + 1)th, that is, the fifth and the seventh. If the machine had
two slots per pole and per phase then the lowest harmonics would
be the eleventh and the thirteenth, and if it had three slots per
pole and per phase they would be the seventeenth and the nine-
teenth.
In Fig. 73 we saw the effect produced by the interference of -

the eleventh and thirteenth harmonics. To a first approximation
we can assume that the equation to this curve is

y =1, sin (11w — g) + 1,/ sin <13(E +7§r) ]
If we make the further assumption that 7, and 7,5’ are each equal
to unity, we get
y=—2sinzsin 12z

as the equation to the curve. This curve is shown in Fig. 74, and
it will be seen that it is not unlike the curve in Fig. 73. Blondel
has suggested that when considering resonance in net-works in
practice, when eleventh and thirteenth harmonics are involved,
it is sufficient merely to consider this curve, which we may
regard as a twelfth harmonic with a periodically varying ampli-
tude. The curve shows the effect of the alternate increase and
diminution of the reluctance caused by the six teeth in the polar’
step. It is to be noted that the disturbing effect changes sign
in each half of the period of the first harmonic. This change of
sign is well shown at 7", O and T (Fig. 74). In practice we are
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only able to calculate very roughly the lowest frequency at which
resonance will ensue in a net-work. It is sufficient therefore to

Fig. 74. The jagged component of an E.M.F. wave produced by six slots.

make sure that this frequency does not approach 2nf'in value, where
| nis the number (odd or even) of the slots in the polar step and f'is
the frequency of the alternating current.

Let us now consider how harmonics are introduced by arma-
ture reaction, taking first the case of a single

Ineoaones by phase machine. Suppose that the current in the
il armature follows the harmonic law. The flux pro-
: duced by this current will be oscillatory and will
rotate with the same angular velocity as the armature when the
armature rotates, or will be fixed in direction when the field ro-
tates. In the first case the oscillatory magnetic field rotating with
the angular velocity /p, where 2p is the number of poles, may
be resolved into two equal magnetic fields, one of which is fixed in
space and the other rotates with the angular velocity 2w/p (see
Vol. I, p. 297). The fixed flux sometimes gives rise to harmonics
owing to the distortion of the magnetic field it produces. The
rotating field introduces a third harmonic, as the expression for the
value of the resulting field contains terms of the form sin wtsin 20t
and this may be written }cos wt— fcos3wt. In.the second case
the oscillatory field being fixed can be resolved into two equal
rotary fields revolving with angular velocities w/p and — w/p re-
spectively. One of these is fixed relatively to the field and the
other rotates with a velocity — 2w/p relatively to it. Therefore,
as before, we find that a third harmonic is introduced by this
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latter field. Hence we generally find a pronounced third harmonie
in the potential difference wave of a single phase machine when
loaded.

In polyphase machines when the currents in the windings in
the armature follow the harmonic law, then, to a first approximation
at least, the resultant flux produced by these currents is fixed
relatively to the field. In practice the field flux is affected by
small periodic fluctuations due to the armature currents and so
harmonics arise from this cause.

Let us consider the electromotive force generated in one phase

of a polyphase generator with a distributed winding

e py in the armature. In order to fix our ideas let us take

e the case of an ordinary ring armature with a Gramme

winding and suppose that the two slip rings to which

the phase winding is connected have p coils between them, the

angle between the planes of two adjacent coils on the armature

being a. Let e, ¢, ... ¢, be the electromotive forces generated in
the coils, then

e, =A,sin (0t — ;) + ... + 4, sin (nwt — ¢,), and
ep=A,sin{wt—¢,—(p—1)a}+... + A, sin {not — p, —n(p —1)a}.
Therefore, since

e=e+ e+ ...+ e, we have

. pa
sin 1
e= A, ~— sin(wt—¢1—p2 a>+...
smé
sin 222 e
'+An v sin (nwt—(ﬁn— 5 na).
sin 5-

. . : A o 2
Hence if sin B:)m / sm%a is less than smp—; / sin 5 the ratio

of the amplitude of the nth to that of the first harmonic is less in

the resultant wave than in the wave generated in a single coil.
We see also that if sin (pna/2) is zero and sin(na/2) is not

zero, the nth harmonic in the resultant wave vanishes. In a single



> —

II1] - INCLINED POLE PIECE 127

phase machine pa is 7, and as n is always an odd number in

practice the nth harmonic is not annulled.
. Consider now the case of a three phase machine with a rotating

armature. In this case we have pa equal to 27/3, hence

pna/2 =nm/3, and na/2 =nw/3p.
If » be a multiple of 3 but not of 3p, there is no nth harmonic
in the resultant electromotive force wave.

The variation of the reluctance of the magnetic circuit due to
the slots in the armature can be prevented by two
x:\trz;)xsisn;fthe methods. In the first method the slots (Fig. 75) are

slots in the o g Sipte 0
armatare from  1Dclined at a certain angle to the axis of the rotor.
o g This angle is chosen so that a line drawn parallel
harmonics.

to the axis through the middle point of a slot directly
under a side edge of the pole piece will pass through the middle

==sseannmnuininnIITI)|

-

Fig. 75. Inclined slots. Fig. 76. Inclined pole piece. The
P is the pole piece. slots are parallel to the axis of
the rotor.

point of an adjacent slot directly under the opposite edge of the
pole piece. Whether the field or armature rotates, the reluctance
of the magnetic circuit of the field will in this case be constant.
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An alternative constructional method -of eliminating the
harmonics caused by slots is to make the slots parallel to the
axis and to incline the pole pieces so that if we project the edge

Fig. 77. Field magnets with inclined pole pieces to obtain a pure sine wave.









CHAPTER IV.

Synchronous motors. Bipolar alternator. Bipolar synchronous motor.
Equation for the torque. Graphical proof that the equilibrium is stable.
Multipolar synchronous motor. Polyphase synchronous motor. The
armature reaction of synchronous motors. Generator and synchronous
motor. Diagram of the armature electromotive forces. Formula for
the potential difference at the terminals. Shape of the resultant electro-
motive force wave. The current vector. Formulae for the output of the
generator and the intake of the motor. - Condition for stable running.
Fundamental equation. Effect of varying the excitation of the motor
and the generator. Graphical solution. Limiting values of the motor
electromotive force. ILfficiency of the transmission. Method of increas-
ing the efficiency. Variation of the current with the load on the
motor. Variation of the current with the excitation of the generator.
Variation of the current with the excitation of the motor. Variation
of the power factor with the load. Variation of the power factor with
the excitation of the motor. References.

WHEN an alternating current dynamo is supplying current to

any circuit, then, owing to the electrical losses i
Syachronous  the machine, the mean power given to the rotor by

the prime mover, must be greater than the electrical
- output. A torque has to be applied to the pulley of the rotor to-
overcome the magnetic attractions and repulsions between the:
field poles and the armature poles, as these forces, in accordance:
with Lenz’s law, tend to prevent the rotation. Now the polarity
of the armature coils alternates with the same frequency as the
current. If, therefore, the values of the currents in the armature
coils at any instant were the same as when the machine is acting
as'an alternator, but if they were flowing in the opposite direction,
the attractions and repulsions would become repulsions and attrac-
tions, and so the induced torque would be in the direction of
rotation and the machine would act as a motor. In order,
therefore, to turn an alternator into a motor we need to supply it

9—2
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with alternating current the frequency of which is exactly equal
to the frequency of the current it would give, when running as an
alternator at the same speed. A motor of this kind is called
a synchronous motor. It is found in practice that its efficiency is
high, and that a considerable mechanical load can be put on the
pulley, without pulling it out of step with the pulsations of the
supply current. In order to understand the action of this type of
motor, let us consider the working of a single phase alternator
which has an armature rotating in a bipolar field.

Let us first consider the simple alternator illustrated in Fig. 79.
We suppose that the armature is simply a bundle of

Bipolar o o o > @
s iron stampings wrapped round with a coil of in-
sulated wire the ends of which are connected with
two slip-rings. We may suppose that the field is produced either

Fig. 79. Single phase alternator or synchronous motor.

by permanent magnets or by electromagnets excited by direct
current. If we rotate the armature at a constant speed, the
electromotive force generated in the coil will be a maximum
when 1t is in the position shown in the figure, and it will be zero
when the axis of the coil is horizontal, that is, when it embraces
the maximum magnetic flux. If SAV is the position of the axis of
the coil at the moment when we begin to measure time, we may,
on making certain assumptions, express the electromotive force
generated in the coil by K sin wf, where o is the angular velocity
of the armature of the two-pole machine and w/27 is therefore the
frequency of the alternating E.M.F. generated.
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If the external circuit be closed through a large non-inductive
resistance, the current in the armature will be in phase with the
armature electromotive force. Hence the current will be a maxi-
mum in the position of the armature shown in Fig. 79, and if the
direction of rotation is with the hands of a watch, that is, if it
rotates against the brushes shown in the figure, the arrow heads
will indicate the direction of the current. The top part of the
armature will, therefore, be a north pole. It will be seen that
work has to be done against the magnetic attractions and re-
pulsions of the field poles in order to maintain the mean angular
velocity. If ¢ denote the instantaneous value of the moment,
about the axis of the armature, of the mechanical forces which
have to be applied to it, so that its angular velocity may not vary,
go will be the rate at which work is given to it, and if this be
expressed in watts, we shall have

gw =ei,

where e and ¢ are the instantaneous values of the electromotive
force and current respectively; we mneglect the losses due to
friction, eddy currents and hysteresis. Since e is zero twice in
every revolution, and ¢ is in phase with e, we see that in this case
g is also zero twice in every revolution. When e and ¢ have not
the same time lag, ¢ must vanish four times every revolution and
1t is sometimes negative and sometimes positive. If the machine
has 2p poles, the frequency of the alternating currents generated
will be pw/2m, and the torque will vanish 4p times every revolu-
tion, provided that the current and electromotive force do not
vanish simultaneously. If they do vanish simultaneously the
torque will vanish 2p times every revolution.

Let us suppose that when the angular velocity of the armature
e of thfa a,b'ove mﬁchine is @, the slip-ripgs are put in
synchronous  circuit with mains supplying alternating current of

4 frequency f, and suppose that o is 27f. Then, if
the armature is rotating in the direction against the hands of
a watch as indicated by the brushes in Fig. 79, and if the current
is a maximum in the position illustrated and flows in the direction
of the arrow heads, there will be a torque in the direction of the
motion as the top part of the armature is a north pole. A quarter
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of a period later the axis of the armature coil will be horizontal.
The current reverses in the armature at this instant, and we
see that the side of the armature which is uppermost is always
a north pole. Similarly, the lower side of the armature is always
a south pole, and hence the torque is always in the same direction.
The effect of the alternating current, therefore, in this case, is to
produce a mechanical torque which tends to accelerate the angular
veloecity of the armature. :

Let us now consider the case when the alternating current
) supplied can be represented by I sin wt. We suppose
fanation ©°*  that ¢ is zero when the axis of the armature coil is in
the position SN (Fig. 79). Owing to the direction of
rotation being opposite to the direction it has when the machine
acts as an alternator, the electromotive force developed will be
always in opposition to the current, and hence work will be given
to the armature. This electromotive force, developed in the
armature, is generally referred to as the back EM.F. of the arma-
ture. Since, in our case, it is proportional to sin wf, we may

write '

go = E1T sin® of,
hence g = G sin* ot
=1}G — 1G cos 20t,

where G is the maximum torque on the armature. We see at
once that the mean torque over a whole revolution is 3G in
this case.
In general, when the alternating current supplied is
I sin (wt — a),
we have g = G sin ot sin (wf — a)
= $@ cosa — 3G cos (2wt — a).

The mean torque is therefore $G cos « and it only vanishes when
@ is + or — ninety degrees. For all values of a between these
Jimits the mean work done on the armature during a revolution is
positive. If, however, a be greater than ninety degrees, the mean
torque is negative, and the armature is giving work to the

electric circuit. In this case the machine is acting as a
generator.
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In Fig. 80 the mean torque is shown graphically for all values

_ of a. BOR is a vertical line through the axis of the
g,?ol}h:fl:lt the armature, and NOS is the horizontal line. The
cauilibrium s Jines OB and OB’ are each equal to G and circles
are described with these lines for diameters. We can

suppose that lines, like OP, drawn to points on the circumference
of the upper circle are positive, and that lines, like OF’, drawn to

points on the circumference of the lower circle are negative. If

v

B’

Fig. 80. OP gives the mean value of the accelerating torque when the phase
difference between the current and the back e.m.F. is the angle BOP.

the angle BOP is a, OP equals BOcosa, that is, $G cosa and
hence this line gives the value of the mean accelerating torque,
when the current lags by an angle a behind the counter EM.F.
generated in the armature. If the angle BOP is o/, then, since
OP' is drawn to the lower circle it is negative and equals 3G cos o,
the mean retarding torque when the angle of lag is o'.

Let us consider the case when the current supplied to the slip-
rings lags ninety degrees in phase behind the back electromotive
force of the armature. In this case, @ will be ninety degrees, and
so OP will be zero. If the armature now slows down, the
difference in phase bétween the back EM.F. and the current will
diminish, and OP will rapidly increase, tending to drive the
armature more quickly. On the other hand, if the armature
quickens when a is ninety degrees, a retarding torque OF’ will be
applied to the rotor by the electrical forces.
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When a is less than ninety degrees and $@ cos a is the mean
value of the retarding torque of the mechanical forces applied
to the armature, the machine will run as a motor, and, if the
moment of inertia of the armature be considerable, there will be
only slight fluctuations in its speed due to the fluctuations in the
value of g. When the armature slows down the mean torque
increases, and when it quickens the mean torque diminishes.
Hence an alternator used in this fashion makes a very satisfactory
motor. It is called a synchronous motor because it is always
exactly in step with the alternating current supplied.

If the machine have 2p poles, and we make the same assump-
tions as before, then )
Multipotar g = G'sin pwt sin (pwt — a)
synchronous = %G cosa — %G COS (prt _— a),

meen where G is the maximum value of the torque when
the current and the back electromotive force are in phase with
one another. We see that, in general, g vanishes 4p times during
one revolution of the armature. The angular velocity of the
armature is 27f/p, and it therefore makes 60f/p revolutions per
minute. A twenty-pole machine, for example, supplied with
alternating current, having a frequency of 50, would make 300
revolutions per minute.

Consider a polyphase alternator with its terminals connected
A with three mains supplying three phase curren"cs, of
synchronous  frequency f; and suppose that the angular velocity of
G the rotor is 27f/p where 2p is the number of poles.
If we make the assumption that the currents and the back electro-
motive forces in the armature coils follow the harmonic law, then,
if g be the instantaneous value of the torque exerted by the
magnetic forces on the armature, we have
go = EI {sin pot sin (pwt —a) + sin (pwt + 2—375) sin (pwt —a+ 2—7T)

3/ =
+ sin (pwt + 4‘?77) sin (pcot —a+ 4;)}
=FEI.$cosa, .

and, therefore,
9=(3EI/2v) cos a.
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In this case, therefore, the torque on the armature is absolutely
constant. We can also easily show that wheu the armature
quickens the torque is diminished, and when it slows down the
torque is increased. Hence a polyphase alternator, provided that
it generates a sine wave of EM.F. and is supplied with harmonic
currents, will run very smoothly as a synchronous motor.

In Chapter I we explained Blondel’s theory of two reactions.
The current in the armature was resolved into two
;l;zztf;;n  ~a components, one of which was in phase with the
synchronous  armature electromotive force, and the other was in
quadrature with it. The former merely produced
a transverse magnetisation of the field, and the latter partially
demagnetised or magnetised the field magnets, according as
the current was lagging or leading. Formulae were found
for these effects. In a synchronous motor the same effects
will be produced, but since, when an alternator is acting as
a motor, the currents in the armature are flowing in the opposite
direction to that in which they flow when the machine is acting
as a generator, the magnetic effects will be reversed. That is to
say, the transverse magnetisation will be in the opposite direction
to that in which it is in a generator and a lagging current will
now tend to magnetise the field magnets whilst a leading current
will demagnetise them. The formulae for these effects are given
on pages 38 and 47.

We shall now discuss what happens when the load on a syn-
chronous motor is varied. In this case, as a rule,
Generator and .
synchronous  the phase difference between the current and the
motor. . . . .
applied potential difference alters, and this produces
a change in the magnetic field of the generator. It is therefore
essential, when discussing the working of a synchronous motor, to
take into consideration also the generator or generators supplying
it with electric power.-

In order to simplify the problem as much as possible, we will
consider the case of two alternating current machines which are
similar to one another in all respects. We shall suppose that
they are running at the same speed and that their terminals are
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" machines are equal at every instant but act in opposite directions
!’ round the circuit of the two armatures, there will be no current,
- and hence no power will be conveyed from one machine to the
' other. In order that power may be transmitted, a current must
 flow, and hence the two electromotive forces cannot be in exact
opposition in phase. The simplest method of discussing this
problem is to represent the electromotive forces generated in each
machine by vectors. We can suppose that these vectors take
account of armature reaction. In Fig. 27, page 52, the line
Jjoining O and C gives us the vector of the armature electromotive
force.

Let OC in Fig. 81 represent the effective value V, of the
armature electromotive force of the generator, and
poeram of . let OA represent the effective value ¥, of the arma-
gectromotive  tyre electromotive force of the motor. Join AC and
bisect it in B, then twice OB represents the resultant
of V, and V, in magnitude and phase, and is the effective value of
the electromotive force that drives the current round the circuit.
Since by the triangle of vectors V, is equivalent to the vectors OB
and BC, and V, is equivalent to OB and BA4, it follows that B4
and BC are each equal to the voltage V between the connecting
mains. The lower part of the diagram OBC refers to the generator
and the upper part to the motor. Hence, although BA and BC
represent the same voltage, yet we have drawn them as if they
were in opposition in phase. The phase of the potential difference
voltage must be drawn in opposite directions when looked at from
the generator or the motor end of the circuit. In one case the
current in a circuit bridging the mains would appear at a parti-
cular instant to be going from left to right, whilst in the other
case 1t would appear at the same instant to be going from right
to left.

If V be the potential difference between the connecting mains,
Formula for  aNd O the phase difference between the electromotive

the potential  forces of the two machines, then
difference at

i = rirals. V=3(Vi+V2:-2V,V,cos6)...... (i
The maximum value of V is therefore 4 (V, + V), and it has this
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value when cos 0 is — 1, that 1s, when the phase difference between
the two electromotive forces is 180 degrees. In this case, the
electromotive forces are in opposition so far as the circuit of the =
armatures is concerned, but they would be in phase as regards
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Fig. 82. Resultant of two rounded electromotive force waves when their angles
of time lag are (a) 0°, (b) 15°, (c) 30°, (d) 60°, (e) 90°, (f) 120°, (g) 150°.

their action on a circuit bridging the two mains joining the
terminals of the machines. We shall see in Chapter v1 that this
is approximately the case when the two alternators are running in
parallel.

If the machines give electromotive force waves of different
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shapes, then @ can never be as great as 180 degrees. For example,

if the electromotive force wave of the generator were sine shaped

and had an effective value of 1000 volts whilst the motor wave

. were rectangular and had an equal effective value, the maximum
value of V would be 9748 volts.

The effective value of the electromotive force wave producing
the current round the circuit of the two armatures is
Shape ot th¢  represented in magnitude by twice OB, and in phase
glectromotive  hy OB (Fig. 81). This, however, tells us nothing
about the shape of the resultant wave. If the waves
were sine curves then, whatever value the angle of lag between
them might have, their resultant would also be a sine curve. In
the general case, however, the shape of the resultant wave is quite
different from the shape of either of its components. In Fig. 82
the variation in the shape of the resultant of two equal circular-
shaped waves is shown for the case of angles of time lag equal to
0, 15, 30, 60, 90, 120 and 150 degrees respectively. It will be
seen that when the time lag is small we get a rounded wave, but
when it is nearly 180 degrees we get a very peaky one.

If both the component waves are peaky, then, as a rule, the
shape of their resultant is rounded when they are nearly in
opposition, and peaky when they are nearly in phase. This
change of shape of the wave of the electromotive force which
produces the current in the armatures makes the phase difference
between it and the current produced a variable quantity, and so
we are not justified in making the assumption that the impedance
of the circuit of the two armatures is constant. Again the
armature reaction of each machine depends on the magnitude
and phase of the current, and so the shape of the electromotive
force waves must also vary from this cause.

If the circuit of the armatures of the alternator and the
synchronous motor acted like a non-inductive resist-

ahe current  ange, the current vector would be represented in phase
by OB (Fig. 81). In general, however, the phase

difference between the current and the resultant electromotive
force is large. Suppose that OK in Fig. 81 represents this
vector, and let the angle BOK equal y. If we suppose that OK



142 ALTERNATING CURRENT THEORY [cH.

is in the plane OAC, the angle KOA would be the phase difference
between the current and the motor electromotive force, and the
angle KOC would be the phase difference between the current
and the generator electromotive force. This would be true if the
waves which 04, OC and OK represent were all sine waves.
In practice it is not true, and hence for a rigorous theory we
would need to have recourse to solid geometry (see Vol I,
Chapter viir). The formulae got by making the assumption that
the vectors are all in one plane are useful and instructive, but it
has to be remembered that they are only approximate.

The formulae for the power generated in the alternator and

received by the motor can easily be deduced from
Formulae fof  Fig. 81. In this figure

the output of
the generator

ihdtorihein. OC is the vector of the alternator EM.F., V;,
e A 0A is the vector of the motor EM.F., V,,
OK is the vector representing the current, 4,,

AOC is the phase difference 8 between O4 and OC,

and the angle BOK is 1.
The angle BOK represents the angle of lag of the current behind
the resultant EM.F. round the circuit of the armatures. This
resultant EM.F. is represented by twice OB.

We shall also denote the impedance of the circuit of the two
armatures and their connecting mains by Z, the electrical power
generated by the alternator by W, and the electrical power given
to the motor by W,. Since KOC is the phase difference between
the vectors OK and OC, that is, between 4 and V,, we get

W,=A4.V,cos KOC.

Now, since Z is the impedance of the circuit of the armatures, and
2. 0B is the resultant E.M.F., we have

2.0B

A==

Again
2.0B cos KOC = 2. 0B cos (BOC —v)
=2.0B cos BOCcosy+2.0Bsin BOCsin y
=(V,+V,cosf)cosy+ V,sinOsiny
=V, cosy +V,cos (€ —).

o Pl et Y™ ]
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Hence, substituting for A cos KOC in the formula for W;, we get

W, = % {(Vicosy+V,cos(0 —q)} nnnnnn. 2).
Similarly Wy=—V,4 cos AOK
=— I%{V2 cosy+V,cos (6 + )} ......... (3).

When the running is steady (2) and (3) give us the relations
between the various quantities involved. We see from (3) that
W, is a maximum when @ is = —«. It is then equal to

—Z—” (Vi—=V,cos ).

Hence the smaller the impedance Z of the circuit, and the nearer
v is to 90 degrees, the greater is the load that can be put on the

| motor.

If we write 7 —« +a for € in equations (2) and (3) we get

St_‘;ﬁiﬁr‘:;.for W,.= % {Vicosy —V,cos (2y — a)}
ning.

V.
and W,= 7{171 cos a — V, cos v}.

If we suppose that a varies owing to irregularities in the speed of
the motor or generator, then

aW,__ WV,

s 7 sin (2y — a)
aw, 15 Ve
and TS sin a.

Hence if a be positive W, diminishes when a increases. We see
that when the motor quickens the power given to it diminishes,
and similarly when it slows down the power given to it increases,
and so the electric forces called into play tend to keep the speed
constant. Also, in practice, 2y is always greater than a, and
hence W,, the load on the generator, diminishes as a increases,
and so this also has the effect of tending to restore « to its original
value. Therefore positive values of a correspond to stable positions
of running.
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When a is zero, W, has its maximum value I;—2{171 —V,cos g

Hence the smaller the impedance Z of the circuit, and the neare |

v is to 90 degrees, the greater is the load that can be put on the

motor. We see also that if power is to be given to the motor, V,

must be less than V,/cos vy.
Again, since

2Z 2
LA A
it follows that for every load W, on the motor there is a positive
and a negative value of a which satisfies this equation. We have
already seen that the positive value of a corresponds to the stable
position of running, and we can show in an exactly similar way
that the negative value corresponds to an unstable position.

CcCosa=

When W, is zero, a is cos™ (% cos ry) . Hence the stable positions
1

of running are given by
O=mr—y+a,

where a can have any value between 0 and cos™ (% cos ry) . IfV,
1 -

be less than V,, 6 may be greater than . In this case we may
regard the generator as the leading machine. For different loads,
a has different values, but in all cases the mean angular velocity
of the rotor is exactly the same, namely 2mf/p, where f is the
frequency of the alternating current and 2p is the number of poles
of the motor. j

When a load is put on a synchronous motor gradually, a slowly
diminishes. When the load is so great that a vanishes, then the
angular velocity of the rotor diminishes, and the applied potential
difference being no longer in step with the back electromotive
force of the armature, a large pulsating current is set up, which
blows the fuses or opens the magnetic cut-outs which are used to
protect the machine.

We know that the square of the effective value of the total
electromotive force round the circuit of the armatures

fq‘;‘;‘ﬁ‘;ﬁ“'“‘ is V24 V24 2V, V,cos 6, where 6 is the phase differ-
ence between V, and V,. Hence, if Z be the
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impedance of this circuit, and 4 the effective value of the current
flowing in it, we have
A2 =V24+V2+ 2V, V,cos0
=V + V2 + 2V, V, cos {(6 +19) — o)
=V24+V2+2V,V,cos (8 + y)cosey
+ 2V, V,sin (6 + ) sin q.
Substituting for cos (6 + ) and sin (€ + ¢) their values obtained
from (3) and noting, since the minimum value of 8 for steady
running is 7 —v, that sin(f +v) is either zero or negative,
we get
A Zr=V2—2W,Z cos ¢y — V2 cos 29
—2sin g {VEVE— (W, Z+VEcosy)f...... (4).
This is the fundamental equation of the synchronous motor. If
we square this equation and simplify we get
(A2 —V32+ V32 + 2W,Z cosy)? = 4sin?y (A222 V2 — W;2Z7).
This equation is sometimes given as the fundamental equation,
‘but (4) is more useful in practice as the values of the
‘variables found from it correspond to stable positions of running
only, and the current is given directly in terms of the other
‘variables.
We shall first consider the effect of varying the excitation of
'the motor or the generator on the current in the circuit, and on
'the power factor of the motor load.

In equation (4), if we regard V, as variable and V,, W,, Z and :
b o v as constants, then, for each value of V,, we get
varying the a definite value of 4. Equating the first differential
excitation of 3 a
the motor and  coefficient of A4 with regard to V, to zero, solving
the generator: e resulting equation for V; and substituting in (4),
we find that the minimum value of 4 is W,/V,. Hence the
minimum value of the current got by varying the excitation of the
generator is W,;/V,. It is, therefore, in exact opposition in phase
to V,. .

Similarly, when we vary the excitation of the motor, the
minimum value of the current is given by

S L w, )3
T 2Zcosy 1422 costy  Z cos ry} g
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In this case we can show that the current is in phase with V;, so
that the minimum value of the current is W,'/V;, where W)’ is the
electric power generated when V, and 4 are in phase.

The above theorems can be proved more easily as follows.

When we vary V; by altering the excitation of the

Graphical — generator, the power W, given to the motor circuit

is —AV,cos6,, where 0, is the phase difference be-

tween A and V,. Since this power is constant, 4 will be a

minimum when — cos 6, is a maximum, that is, when 6, is 180°,
and in this case 4 is W,/V.,.

A A
o
B B
K Y
G G

(a) U]
Fig. 83. (a) The minimum value of the current when the excitation of the

generator is varied. (b) The minimum value of the current when the excitation of
the motor is varied.

In Fig. 83 (a) gives the diagram for the minimum value of the
current when the excitation of the generator is varied.

Again, from equations (2) and (3), or directly from the fact that
the electrical power generated by the alternator equals the power

i A — g A ik § .

am—y 4
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given to the motor together with the power expended by the
driving electromotive force, we have

Wi=W,+AZ. 4 .cosvy.
Now W, equals 4V cos@,, where 6, is the phase difference
between A and V,. Substituting this value for W, in the above

equation, and solving the resulting quadratic equation for 4, we
tind that

Viycos 8, (Vicos*6, W, |}
T2Zcosy {4‘Z2 costy  Z cos 'y} ]

For every load W, there are two possible values of the current,
but the larger one corresponds to the unstable position of running,
and so we have prefixed the negative sign to the radical in the
above equation.

Since the differential coefficient of A with respect to cos ), is
a negative quantity, it follows that 4 diminishes as cos 6, increases.
Hence it has its minimum value when cos 6, is unity, and this
gives us the same value of A as before. Also, in this case, W/
equals 4 V7, and hence the minimum value of 4 is W, /V,. This
case is illustrated in (b) Fig. 83. The vector OK of the current
coincides in direction with OC, the vector of the generator electro-
motive force.

In order that the value A of the current given by equation (4)
may be real, W,Z + V? cos y must be less than V., V,..

tomiting . It follows that the value of ¥, must lie between
e Vi { V0 ol

2cosy  (4cos’y cosry
vnd W A {_V_ £ }*_

2cosy (4costy cosqy)

We see that if cosv be small, the back electromotive force of the
motor may be considerably greater than the electromotive force
of the generator which is driving it. The maximum value of W,
is, however, V,?/4Z cos .

Suppose, for example, that  is 60 degrees, then V, must lie
between

Vit (VE2—=2W,Z) and V,— (V2 —-2W,Z)4
The maximum value of W, in this case is V?/2Z.
10—2
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If n denote the ratio of the power given to the motor to the
>4, Tl total power genera?ted by the alternat.or,. then 7 1
the trans- the fractional efficiency of the transmission. With
mission. .

our usual notation
R W,+ A*Z cosy’
and hence for a given load W, the efficiency is a maximum
when the current is a minimum. If we vary the excitation
of the generator, V, remaining constant, the minimum value
of the current is W,/V,. Hence the maximum efficiency in this
case 1s

1
1+ WZZcos'y

2
and this diminishes as W, is increased.
Again, when we vary the excitation of the motor, keeping V;
constant, the maximum efficiency oceurs when A has its minimum
value W,/V,, and in this case

LWy W
Ny
C Ll Ve W, 1}
L T 2Zcosy {4Z“’ cos’y  Zcos ry} :

Hence the maximum efficiency when the load is W, can be
found.

The above results point out the following method of procedure
S as being theoretically desirable, when we wish to
increasing the increase the efficiency by raising the voltage. First
5 el adjust the excitation of the motor until the current
is a minimum. Then increase the excitation of the generator
until the current is again a minimum. Then go back to the
motor and increase its excitation until the current is reduced
again to its smallest value, and so on backwards and forwards
between the two machines until the desired efficiency is attained.
In practice a limit to the possible excitation is soon reached. It
would save time to over-excite the motor in the first instance, but
the theoretical method is worth remembering.

e e
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As the fundamental equation (4) is complicated, we shall
s illustrate it graphically by drawing curves for various
pariation o particular cases. It is to be remembered that we
with the load  have made the assumption that the current vector
and the electromotive force vectors are in one plane,

and we now make the further assumptions that the impedance Z
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Fig. 84. Variation of current with the load on a synchronous motor.

and the angle of lag o remain constant as the excitations vary.
The curves arrived at are very similar to those obtained by actual
experiments, and show that the main phenomena connected with
the working of synchronous motors could have been predicted
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from the properties of triangles. On the other hand the anomalous
results sometimes obtained when the electromotive force waves are
very distorted from the sine shape, show that our assumptions are
not justifiable in these cases.

In Fig. 84 a curve is shown illustrating how the current 4
varies with the load W, on the motor. The angle of lag v of the
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Fig. 85. Effect of varying the excitation of the generator, on the current
taken by a synchronous motor at three different loads ‘a,” ‘b’ and ‘c’ when v
is 45 degrees.

current behind the resultant or driving electromotive force round
the circuit of the armatures has been taken equal to 45°. In
practice it is usually greater than this.

It will be noticed that when W, is zero the current is 15
amperes, but when the load is 75 kilowatts the current is only
10 amperes. It will be seen that the current varies very little for
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a small increase or diminution of this load. On the other hand,
when the load is heavy, a slight increase of it will cause a large
increase of the current.

Fig. 85 shows how the current varies with the excitation of the
! generator for three different loads which are to one
Variation of ¥ L
the current another in the ratios 1: 16 : 25. The angle of lag
with the exci- . >
tation of the  has again been taken equal to 45 degrees. When
R sor running at a high voltage increasing the load
diminishes the current, but at a low voltage increasing the load

mcreases the current.

The curves in Fig. 86 show how the current varies with the
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Fig. 86. The curves ‘a,” ‘b’ and ‘c’ show how the current varies with the
excitation of a synchronous motor at light loads when y is 90°
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excitation of the motor when v is 90 degrees. The curve ‘a’
Variation of  Shows the machine ru.nning on a zero load. .In this
the current ~ case the curve is simply two lines meeting one
Tation ¢ e another at the point 10 on the axis of 2. The
L curves ‘b’ and ‘¢’ show the machine running on
a light and a moderate load respectively. The curves do not
intersect one another in this case.

In Fig. 87 we have taken  equal to 45 degrees, all the other

data remaining the same as in the preceding illustration. It is to
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Fig. 87. The curves ‘a,” ‘b’ and ‘c’ are the V curves of a synchronous motor
on light loads when v is 45°.

be noted that the curves now cross one another. Comparing
them with the curves shown in the preceding diagram it will
be seen that the new curves are much narrower than the old, and
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that there is a superior as well as an inferior limit to the excitation
of the motor.

Curves similar to those shown in Figs. 85, 86 and 87 were
first obtained experimentally by Mordey. They are generally
called V curves.

The power factor of the motor circuit is the cosine of the angle
between the current vector OK and the line joining

X,aeﬁ;;i:,:,"f the extremities of the two vector electromotive forces
fator withthe () 4 and OC shown in Fig. 81. When the motor is
feebly excited, V, is small, and hence the angle BOC

is small. In practice the angle BOK is nearly 90 degrees; hence
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Fig. 88. The curve ‘a’ gives the relation between the power factor and the load
when vy is 90° and ‘b’ gives the relation when v is 45°,
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the current OK lags behind the applied potential difference BC
in phase. As we increase the excitation, V, increases, and OK
becomes parallel to BC for a particular excitation. It would

apparently follow that the power factor must always be unity for

a particular excitation. We have, however, to remember that we
have made the assumption that OK and BC are in one plane,
and this is never exactly true in practice.

In Fig. 88 ‘a’ shows the relation between the power factor
and the load when v is 90 degrees, and ‘b’ the relation when v is
45 degrees. In ‘a’ the power factor increases with the load, and
attains its maximum value 0'96 when the load has its maximum
value of 120 kilowatts. In ‘b’ the power factor is unity when the

load is 42 kilowatts, and it then diminishes. The maximum

permissible value of the load is now only 56 kilowatts.
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In Fig. 89 the data, with the exception of the curve ‘a’ which

Pl represents a very light load, are the same as for the
Variation of 3 5
the power curves in Fig. 86, so that the two sets of curves can
B s o~ be compared. For each curve the power factor
- Tamtah equals unity for an excitation denoted by 10. For
values of the excitation less than this, the current lags behind the
applied potential difference by an angle ¢, where cos¢ is the
power factor, and for values of the excitation greater than 10, the
phase difference is leading. From Fig. 83(b) we see that when
we gradually increase the excitation of the motor, the current
attains its minimum value after the power factor becomes unity.

The ease with which large lagging or leading currents can be
obtained by under-exciting or over-exciting synchronous motors
sometimes makes them useful in general testing work when large
choking coils or condensers are not available (see page 55).
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CHAPTER V.

Blondel’s bipolar diagram. Lines of equal power when the excitation of the
generator is varied. Lines of equal phase when the motor excitation is
constant. The excitation of the generator required to give a power
factor of unity. The circle limiting the current vector. Example,
Synchronous motor supplied from constant potential mains. Rotary
condenser. Reactance motors. Synchronous motors with alternating
fields. The starting of single phase synchronous motors. Polyphase
synchronous motors. The starting of polyphase motors. Determination
of the moment of inertia of the rotor. Methods of determining the =
efficiency of a motor. Brake tests. Experimental results. Advantages
of synchronous motors. References.

THE following graphical method of studying the working of a
I synchronous motor is instructive and is useful in
3223’,:; practice. We make the assumptions that the

' vectors of the electromotive forces and the currents
can be represented by lines in one plane, and that the impedance
of the circuit of the armatures is constant. The effects of
armature reaction are also neglected. In the diagram (Fig. 90)
OP represents the armature electromotive force V; of the generator
and 00, the armature electromotive force ¥V, of the synchronous
motor. The angle POO, is the supplement of the phase difference
between V, and V, and hence, by the triangle of vectors, O,P
is the effective value of the resultant electromotive force round
the circuit of the armatures. Let the line O,B give the phase
of the current and draw PB perpendicular to O,B, then 0,B will
represent the watt electromotive force acting (Vol. 1, p. 158) round
the circuit. If we multiply the effective value 4 of the current
by O.B we get the power expended in heating the armature
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windings. Owing to eddy currents this power will be greater
than R. A2, where R is the resistance of the armature coils. The
value of O,B will be therefore greater than R.A. In practice,
it 1s customary to assume that O,B equals nR.A where n is a
number greater than unity. Usual values for n are 1'5 and 2.

Y

Fig. 90. Blondel’s bipolar diagram.

Y0,Y’ is inclined at an angle y to O,X. O,P represents on a certain scale the
current veetor, when the phase difference between it and V, is measured from 0,Y’.

If Z be the impedance of the circuit of the armatures, O,P will
be equal to Z.A and if ¢ be the phase difference PO,B we have
cos  equal to nR/Z.

Since O, P equals Z. 4 we can make O,P represent the current
in magnitude by assuming that the length representing one
ampere is Z times the length representing one volt. In other
words the scale in which the amperes are measured must be
Z times the scale in which the volts are measured. We can also
make O,P represent the current in phase by assuming that the
phase difference between this vector and V, is measured by the
angle it makes with a line ¥"0,Y which is inclined to OX at an
angle «. .

To prove this, let us suppose that the line Y’0,Y makes an
angle 4y with OX. Since the angle PO,B is also equal to v, it
follows that the angle PO,Y equals the angle BO,X and therefore
the angle BO,0 equals the angle PO,Y’. Hence, if we measure
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the phases of the electromotive force vectors by the inclinations of
these lines to OX we can measure the phase of the current by the
inclination of O,P to 0,Y’. We see, therefore, that if the scale
of the amperes is Z times the scale of the volts and the phase of

0,P is measured by its inclination to 0,Y’, then O, P will represent

the current vector completely.

This diagram is known as the bipolar diagram. It enables us
to see easily how the current and electromotive force vectors vary
with the excitations of the machines.

If PCX (Fig. 90) be drawn at right angles to 0,Y, then, in
the scale in which the currents are measured, 0,C will represent
the watt current with respect to V,, and PC will give the wattless
current. If the power given to the motor is W,, we have

W,=V,.A cos BO,X
=V,.A cos PO,C
=V,.0,C
where 0,C represents the watt current. Its length must be
measured in the ampere scale.

Let the excitation of the motor and the load on it be kept
constant, whilst the excitation of the generator is

Lines of . — A

equatpower  varied. Then, since W, and V, remain constant, the
:‘;‘:‘f&:&; watt current O,C must also be constant. For all
ofthelgens excitations of the generator, therefore, under the

rator is varied.

given conditions, P must lie on the line PCX. ' This
line may be called, therefore, a line of equal power. In general,
all lines drawn perpendicular to 0,Y are lines of equal power.

If P and O are on the same side of 0,Y, PC the wattless
component of the current will be lagging with respect to V,. In
this case the current will be leading with respect to the P.D.
applied at the motor terminals, and so the armature reaction will
weaken the field of the motor. If, however, P and O are on
opposite sides of 0,7, the wattless component CP will be leading
with respect to V, and the field of the motor will be strengthened
by the armature reaction. It has to be remembered that in
obtaining the diagram we have neglected these reactions.

In the last chapter we saw that, when the phase difference
between V; and V, is 7 —q, the running is unstable. This can

\z
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be seen also from the bipolar diagram. When OP (Fig. 90) is
perpendicular to PX, the angle P00, is equal to the angle Y0,X.
It is therefore equal to 4. Hence the angle between ¥V, and V, is
ar —«. In this case OP, which represents V,, is a minimum for the
given load corresponding to the watt current O,C. If the load
were to diminish, O,C would diminish, and there would be a stable
position of running, but if it were to increase, OP would not
reach the new power line drawn through C, there would be no
position for stable running, and the machine would drop out of step.

When V, equals OC, the wattless component of the current
with respect to V, vanishes, and when V, is greater than OC the
wattless component is leading. For values of V, greater than 0X
we may consider that the generator is the leading machine.

The phase difference between a current vector O,P (Fig. 90),

and the vector 0O,, representing the armature
Lines of

equal phase electromotive force of the motor, will be PO,Y".
when the Chpans , 9

e e ita. Hence this angle represents the phase difference
ion is con- between any of the current vectors, which point

stant.

in the direction O,P, and the motor EMF. The
line O,P may be called, therefore, a line of equal phase. In
general, every line drawn through O, is a line of equal phase.
When the current is in opposition in phase to V,, 0,Y will be
the line of equal phase. If 6 be the phase difference between V,
and V, in this case, we see from the diagram that

—Vicos0—V,=ZA4 cosy
and hence ViAcos(m—6)=V,A + ZA%cos y.

This could also have been written down directly, since the
electric power generated must always be equal to the power
given to the motor together with the power expended in heating
the circuit.

In Fig. 90 the angle PO,Y is not the phase difference

i = between the current and the applied potential

thfhix;;:,?f‘m difference at the motor terminals. If L (Fig. 91)

taorwduired  be the middle point of O,P and the lines have the

power factor  game meanings as in Fig. 90, then, if we make
of unity. [

the assumption that the motor and generator are

exactly similar machines, OL will represent in magnitude and
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phase the potential difference applied at the motor terminals.
If the angle OLO, equals the angle LO,B (y) then OL and O,B
will be parallel and the phase difference between them will
vanish. Whenever, therefore, the angle OLO, is «, the power
factor of the motor circuit will be unity. In this case, the locus
of L is a circle having 00, for a chord and touching 0,¥ at 0,.

o < o, =k

Fig. 91. When P lies on the circle O,NP, the power factor of the motor circuit
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>