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PBEFACE.

N this volume I have endeavoured to give a sketch of the

theory of the working of alternating apparatus in the hope

hat it will prove helpful to engineers, teachers and advanced

tudents. In addition to the more elementary parts of the theory,

introduction is given to several of the more difficult problems

hich arise in practical work.

The questions of armature reaction, of phase swinging and of

free and forced oscillations, of the magnetic effects produced by

various types of windings, etc., have often been discussed at the

meetings of technical societies in this and other countries. In

some of the papers which are published in the proceedings of

these societies, theorems are quoted from books or journals which

are not readily accessible, and in others an advanced theoretical

knowledge is assumed. It was thought, therefore, that an intro-

duction to the theory would prove useful to many.

Formulae obtained from admittedly imperfect theory are often

used in the practical design of electrical machinery, and it is of

great importance to know their limitations. The utility of many
of the theorems given below has been amply proved by modifi-

cations of the design of several well-known types of apparatus.

I have to thank many, engineers for their kind permission to

make use of their papers or for furnishing me with experimental

data. In particular I wish to thank the Maschinenfabrik Oerlikon.

In the first two chapters the theory of single and polyphase

alternators is set forth. Great credit is due to Mr J. Swinburne

for his early recognition of the importance of armature reaction
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VI PREFACE

in the working of these machines. Many of the phenomena which

puzzled the early electricians are easily explained when this is

taken into account. For the proofs of the formulae for armature

reaction given in Chapters I and xm I am indebted to Professor

C. F. Guilbert. I am also deeply indebted to Professor Andre

Blondel for the instructive oscillograrns illustrating the working

of two and three phase machines given in Chapter n.

The experimental methods of analysing E. M. F. waves given in

Chapter in, particularly that due to JVIr H. Armagnat, are useful

in practice. The theory of synchronous motors developed in

Chapters IV and V is an easy application of the methods used

by J. Hopkinson. It is shown how the V-curves, first described

by Mr W. M. Mordey, could have been predicted easily by

elementary theory. The development of his father's theory by

Professor B. Hopkinson given in Chapter VI is particularly

interesting, and the theoretical method used will be found helpful

in many allied problems.

The question of the cause of the fracture of shafts, coupling

engines and alternators has been briefly discussed and a simple

explanation, due to Dr C. Chree, of the whirling of shafts is also

given.

The theory of the alternating current transformer is set forth

at length, as it is in excellent accord with experiment. In this

connection I have to acknowledge my indebtedness to Professor

J. A. Fleming. The theory of the induction motor is developed

on the lines laid down by A. Potier. In writing Chapter XIV,

describing the effects of harmonics in the E. M. F. and flux waves

on the working of induction motors, I have received great help

from papers by Mr E. Noaillon and Mr M. B. Field. The theory

of the commutator motor, enunciated in Chapter xv, is practically

that used by many French engineers.

To Mr de Marchena, the engineer to the Gampagnie frangaise

Thomson-Houston, I am particularly indebted for some of the
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theorems and experimental data given on rotary converters. In

the slight sketch of the theory of the electric transmission of

power given in Chapter xvn I have elaborated a theorem due

to Professor J. Perry, and I am also under obligations to Mr Oliver

Heaviside.

Considerations of space have compelled me to omit many

problems of theoretical interest and practical importance. The

student, however, by studying the analogous problems set forth

in this volume will find that it is not difficult to make a practical

working theory for himself. For instance a practical solution of

the problem of the stability of the motion of three alternators

coupled in series a method of getting three phase currents

which has been proposed by Mr C. P. Steinmetz can easily be

found by a slight extension of J. Hopkinson's method.

In conclusion I have to thank several friends who have

assisted me in revising the proofs or by making suggestions.

My best thanks are due to Dr C. Chree, F.R.S., for discussing

with me several of the problems contained in this work and

for revising many of the proof sheets. I am also deeply indebted

to Mr F. J. Dykes, Fellow of Trinity College, Cambridge, and

lately Professor of Electro-technics at the Royal Naval Schools,

Portsmouth, for reading all the slip proofs, and to Mr Clifford

Paterson, A.M.I.C.E., late of the Oerlikon Works and now of the

National Physical Laboratory, for reading several of the earlier

chapters. I have again the pleasure of thanking Mr W. C. D.

Whetham, F.R.S., for the care with which he has edited this

work.

A. R.

2, BELLEVUE PLACE,

RICHMOND, SURREY.

October, 1906.
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SYMBOLS.

A, effective value of an alternating current.

A', area of E.M.F. wave.

B, magnetic induction
;
a constant.

#max ,
maximum value of the magnetic induction.

C, direct exciting current ;
direct current ; effective load current on

the bus bars.

D, a constant.

E, maximum value of the alternating voltage.

F, force ; symbol for ' function of.'

G, average torque.

H, magnetic force ;
heat in calories.

I, maximum value of an alternating current when it follows the

harmonic law.

K, capacity between the mains.

L, self inductance
; leakage inductance of armature.

L
l , Lt,, self coefficients of stator and rotor of induction motors.

M, mutual inductance
;
mutual coefficient between stator and rotor;

mass.

Mk2
,

moment of inertia.

N, number of turns of wire in series on the whole armature.

NU number of armature turns per field magnet pole.

N f

,
number of conductors joined in series on the armature.

P, power.

Q, quantity of electricity.

jR, resistance.

R! ,
resistance of the primary coil of a transformer ;

resistance of a

single main.

JBj, RI, Rj", resistances of the primary coils of a three phase transformer.

5, area of cross section.

T, periodic time.

V, Vlt ..., effective voltages.

F1( a, F2 . 3 , ..., effective mesh voltages.

W, energy ;
number of pounds of steam.

X, excitation losses.

Z, impedance.

a, pitch of poles ; length.

6, breadth of the polar flux entering the armature ;
breadth of a

coil.

b', breadth of the armature coil.

c, breadth of side of coil.

e, instantaneous value of E.M.F.

ei> e
\-> ei"> primary voltages.

ez , e%, e2", secondary voltages.

/, frequency ; symbol for ' function of.
'

<7, instantaneous torque.

?',
instantaneous current.



Xll SYMBOLS

*i 1V> V> primary star currents.

i2 ,
t'2', t'2", secondary star currents.

A;, form factor
; capacity between the mains per unit length.

kmy form factor for mesh voltage.

k
g ,

form factor for star voltage.

I, self inductance per unit length,

m, mass ; a constant,

n, number of turns
;
a constant.

p, half the number of poles.

q, number of phases.

r, resistance ; resistance per unit length.

r2 ,
resistance of the secondary coil of a transformer.

r2 ,
r2',

r2", resistances of the secondary coils of a three phase transformer.

s, insulation resistance per unit length ; slip.

t, time in seconds.

v, potential difference; velocity; l/^Jlk; 3 x 1010 cms. per sec.

vlt vj, v/', primary mesh voltages.

v2 ,
v2', v2", secondary mesh voltages.

a, p, numbers,

a, /3, 7, 5, angles.

7, 6, \j/, phase differences.

c, base of Neperian logarithms.

77, Steinmetz's coefficient
; efficiency.

X, dielectric coefficient.

/*, magnetic permeability ; rigidity.

TT, 3-14159....

p, resistivity ; density.

ff, resistivity of insulating material; leakage factor= 1 -J^/LjLg.

T, time constant.

0, instantaneous value of flux.

w, angular velocity ; 2ir x frequency of supply.

F(w), the gamma function of w.

2, the symbol for summation.

<, maximum value of the flux when it follows the sine law.

'J'max.j maximum value of the flux.

<J>^, flux of induction from a pole entering the armature.

<I>a , leakage flux.

12, 2ir x frequency of supply.

^, mean magnetising force in ampere turns.

J^, mean transverse magnetising force.

47r(R/10, reluctance.

4?r(Ra/10, leakage reluctance.

reluctance of field magnets,

air-gap reluctance.

.sin
i/',

the demagnetising turns per pole due to the armature curre

cos
i//,

the transverse magnetising turns per pole due to the armature

current.
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Dynamo electric machines. Stator and rotor. Various types of single"

phase alternators. Frequency. Armature with bar winding. Single

coil winding. Disk armatures. Inductor machines. Distribution of

magnetic flux. Effect of the armature currents on the field. Open
circuit electromotive force formulae. Effect of the breadth of the

armature coils. Open circuit characteristic. Flux curves. Short cir-

cuit characteristic. Wave windings. Lap windings. Principle of two

reactions. Formula for the demagnetising effect of the lagging com-

ponent of the current. Formula for the compensating ampere turns

required for the field magnets. The compensating ampere turns required

to keep the flux in the field magnets constant. Transverse magnetisation

of the field. Numerical example. Load characteristics. The electro-

motive forces in the armature. Working diagram. Equation to the

short circuit characteristic. Characteristic curves on wattless loads.-

General equation to load characteristics. The regulation of alternators..

Theoretical characteristics. Alternating component of the exciting

current. References.

WHEN a moving wire cuts lines of magnetic induction, an

electromotive force is generated in it. If the wire

electric form part of a closed circuit, a current will flow in the

circuit, and, as Lenz pointed out, the current will pro-

duce electromagnetic forces tending to stop the motion. Hence,

to overcome this resistance to the motion, mechanical work must

be expended on the wire, and this work, by the Conservation of

Energy, will be the equivalent of the electrical work generated.

This method of converting mechanical energy into electrical

energy is the method utilised in dynamo electric machines. In

a direct current dynamo, the current always flows in the same

direction round the external circuit, but, in an alternating current

dynamo, the direction of the flow of the current in the external

R. II. 1



2 ALTERNATING CURRENT THEORY [CH.

circuit is continually reversed. In a direct current machine,

however, the current induced in an armature coil is flowing in one

direction when it is moving past a north pole and in the other

direction when it is flowing past a south pole. Hence the current

in the coil must be reversed in some intermediate position. In the

process of reversal the coil is first short circuited by one of the

brushes which press on the commutator. The currents flowing in

the armature coils of a direct current machine are thus really

alternating currents, the frequency of which equals the product of

half the number of poles multiplied by the number of revolutions

of the armature per second.

In an alternating current dynamo, or as it is generally called,

an alternator, the coils of the armature are connected in such a

way that the electromotive forces generated in them are all acting

in the same direction at any instant, the direction of the resultant

electromotive force altering every time a coil passes a pole. If the

electromagnets which produce the field rotate, the ends of the

armature winding are connected directly with the terminals of the

machine, the rotation of the exciting magnetic field maintaining
an alternating potential difference between these terminals. If

the armature rotates and the field magnets are stationary, then

the ends of the armature winding are connected with metal rings

fixed on the shaft, but insulated from it, on which press copper

or carbon brushes connected with the terminals of the machine.

These rings are called slip rings or collector rings.

One advantage that direct current machines have over alter

nators is that they are self-exciting. After the magnets have

once been excited, their residual magnetism is sufficient to produce
a weak field in the air-gap. If the dynamo is shunt wound, the

field magnet windings are in parallel with the external load but in

series with the armature winding. When the armature rotates

either on open or closed circuit, the low E.M.F. generated in it by

the residual field will send a small current round the field magnet

windings. This current excites the field magnets and increases

the induction in the air-gap. Both the E.M.F. and the current

therefore, will go on increasing until the E.M.F. generated in the

armature conductors only suffices to produce the magnetising

current required to maintain the magnetic field giving that E.M.F
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In a series dynamo, the field magnet windings and the armature

windings are connected in series between the terminals of the

machine, and thus, on open circuit, no current will flow in tire

field magnet windings and the potential difference between the

terminals will be due merely to the residual field. When, how-

ever, the terminals are connected through an outside load, a

current will flow, and the magnetic field and the electromotive

force generated will both increase until equilibrium is attained

in the same way as in a shunt machine.

In almost every type of alternator, on the other hand, we

require a small direct current dynamo to provide the current

required to excite the field magnets. This dynamo, which is

called the exciter, is generally mounted on the shaft of the

alternator. The exciters of modern alternators are shunt wound.

The voltage of the exciter, and therefore the strength of the

alternator's field, can be regulated by varying the resistance of a

rheostat in the shunt circuit of the exciter. In central stations, a

battery of storage cells is often used in addition to the dynamo,
thus reducing to a minimum the risk of a break-down in the

exciting circuit.

In an alternator either the field magnets or the armature may
rotate. It is convenient to refer to the rotating

fotor*
'

Parfc f a machine as the rotor, and to the stationary

part as the stator.

If the armature coils are connected in series, and if
<j>lf <.,, ...

be the instantaneous values of the fluxes linked with them and the

coils have Nlt N.2 ,
... turns of wire respectively, the electromotive

force e generated at any instant is given by

....
dt

~
dt

The magnetic flux through a coil can be altered mechanically

in several ways, and we can classify alternating
Various types "I

of single phase current generators according to the method utilised

for varying the flux. The first class of alternator

comprises those which have rotating armatures and fixed field

magnets. In the second class, the armatures are fixed and the

12



ALTERNATING CURRENT THEORY [CH.

field magnets rotate
;
and in the third, both the field magnets

and the armature are fixed. The types of alternator belonging to

the second class are those most commonly employed in practice.

Since the armatures are stationary, they can easily be wound for

high pressures. The large moment of inertia of the revolving
field magnets promotes steady running by diminishing the effect

on the speed of any irregularities in the driving torque. In this

respect its action is similar to that of a flywheel. In the first two

types of alternator the poles of the field magnets are evenly
distributed round the circumference of the stator or rotor, and

adjacent poles are of opposite polarity. The field magnet coils are

often formed by a single layer of copper strip wound edgewise
round the field magnet, and insulated by a fibrous material

between the turns. The exterior surface of the windings is

merely protected by an insulating varnish which allows the heat

generated in the field coils to be radiated away rapidly. In order

to avoid appreciable losses due to eddy currents, the armature is

built up of thoroughly annealed soft iron or steel plates, which are

generally insulated from each other either by means of thin paper

pasted on one side of each plate or by a suitable varnish. The

polar
'

pieces
'

or * shoes
'

which form the poles of the field magnets
are also built up of thin plates of iron or steel.

Frequency.

If the rotor of an alternator be made to revolve, the value of

the magnetic flux embraced by an armature coil

continually alters. When the armature rotates, the

magnetic flux embraced by a coil on it goes through all its cyclical

values in the time the coil takes to pass two adjacent poles, and

when the poles rotate, the period of the varying flux is the time

taken by two adjacent poles to pass the coil. Hence, the frequency

is independent of the armature windings and depends only on the

number of field poles and the number of revolutions per minute

of the rotor. If 2p be the number of poles, so that p is the

number of pairs of poles, and if N be the number of revolutions of

the rotor per minute, then the frequency /is given by

pN
S~~ 60

'

In both the first and the second type of alternator, the magnetic
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flux embraced by an armature coil alternates between equal positive

and negative values. The field magnet poles are also invariably

similar, and hence the positive and negative halves of the E.M.F.

waves produced are of exactly the same shape.

A simple form of armature winding for a twenty pole alternator

is shown diagrammatically in Fig. 1. The field mag-
Armature . , ,
with bar nets point inwards and neighbouring poles are of

opposite polarity. The thick lines represent copper
bars placed in slots on a cylinder built up of iron stampings.

Fig. 1. Armature winding of twenty pole single phase alternator. The current

is collected from the slip rings S:
and S.2 by contact brushes.

This forms the armature. For clearness of illustration the bars

are drawn radially, but in reality they are perpendicular to the plane
of the paper, that is, parallel to the shaft of the machine. Since
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the electromotive forces generated 'in neighbouring bars, as the'

armature rotates, are of opposite sign, we shall have all the E.M.F.S

generated acting in the same direction if we connect the ends of

the bars alternately as in the figure. The ends of the circuit are

connected to two slip rings $x
and S2 ,

and so an alternating

potential difference is maintained at the terminals of the machine,

which are in electrical connection with brushes pressing on the

rings.

In Fig. 1 we may suppose that the field magnets revolve. In

this case the direct current required for the excitation of the field

magnets would be collected by slip rings, and the windings of the

armature would be connected to fixed terminals.

In the single coil winding shown in Fig. 2, the coils are

single coil
connected in series, and as their E.M.F.S are all in

winding. phase with one another, the terminal voltage of the

machine is the sum of all the E.M.F.S generated in the coils. Since

the voltage is proportional to the number of turns in each coil,

the machine illustrated in Fig. 2 can easily be constructed to

give a much higher voltage than that shown in Fig. 1.

In both the above machines we have iron in the armature.

Most of the magnetic lines common to two adjacent poles complete
their paths through the iron cylinder on which the copper con-

ductors are placed. There will be two air-gaps in the path of the

lines of force, one immediately under each pole. The lines of force

where they leave the polar faces are pointing approximately in the

radial direction, that is, to the axis of the shaft, and the conductors

cutting them are parallel to this axis.

An alternative form of construction is to have the armature

Disk conductors pointing radially and the lines of force

armatures.
paralle l to the axis of the shaft. This kind of arma-

ture is called a disk armature, and iron need not be used in its

construction. The armature windings, shown in Figs. 1 and 2,

illustrate also the ' wave
'

and '

coil
'

windings respectively for disk

armatures. The conductors are of copper strip and are wound on

non-magnetic frames, generally of laminated brass. Consecutive

turns of the copper strip in a coil winding are insulated from one
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another by some suitable material. All the coils are bolted

together and are mounted on the circumference of the armature

wheel so that the axes of the coils are at right angles to the plane
of the wheel. The field frame supports two rings of magnetic

poles facing one another. The axis of each pole is parallel to the

shaft, and the poles facing one another are of opposite polarities,

and so also are the poles adjacent to one another on the same

Fig. 2. Twenty pole alternator with single coil winding.

ring. If NI and Si be two adjacent poles on the first ring, and

Si and NI be the two opposite poles on the second ring, then,

neglecting leakage, half the flux leaving NI crosses the air-gap

and goes through Si. From Si it goes through part of the second

ring to NI and crosses the air-gap to Si, and finally it returns,

through part of the first ring, to N^ There will thus be two
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air-gaps in the path of the flux. The other half of the flux

leaving NT. has a similar path on the side of N-^ remote from Slt

The size of the air-gaps is only sufficient to allow the armature

coils to rotate safely. As adjacent fields are of opposite polarities

we get alternating electromotive forces set up in the armature

coils, which may be connected with one another as in Fig. 2. It

is customary, in practice, to place another set of coils between

those indicated in Fig. 2 and exactly similar to them. The two

sets of coils are generally connected in parallel.

In constructing this type of alternator it is difficult to make
the armature of sufficient mechanical strength to withstand the

appreciable mechanical stresses to which it is subjected when

running. None of the insulating materials employed in practice,

such as micanite, fibre, slate, ebonite, stabilit, presspahn, etc., have

any great mechanical strength.

Machines belonging to the third class are called inductor

inductor machines. In the commonest type of this class the
machines. rotor consists of a wheel carrying on its rim blocks of

laminated iron which, in certain positions, make the reluctance of

the magnetic circuit, common to the field and the armature, ex-

ceedingly small. If <& be the induced flux, and nC the exciting

ampere-turns round a magnetic circuit, then (Vol. I, p. 51) we have

4rirnC/10

Reluctance
'

Hence, if we vary the reluctance, C remaining constant, <3> will

vary, and therefore an E.M.F. will be set up in any coil embracing
this magnetic circuit. In some inductor machines, the armature

coils and the exciting coils are wound on the same polar projections.

In this case the flux merely undulates between a maximum and a

minimum value. In actual machines of the undulating type the

ratio of the maximum to the minimum flux varies between three

and ten.

In other inductor machines the flux periodically reverses in

direction. To see how this is done consider the diagrams 3, 4,

and 5.

The polar projections N and S (Fig. 3) are excited by direct

currents flowing in coils wound round them. A represents a polar
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projection which is generally made of laminated steel with an

armature winding coiled round it. The blocks of laminated iron

M M

Fig. 3. Principle of inductor machine. Initial position ;
flux entering A.

\

M M

Fig. 4. Principle of inductor machine. Intermediate position.

M M

Fig. 5. Principle of inductor machine. Half a period later than in Fig. 3,

flux leaving A.
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on the circumference of the rotor are marked M. In Fig. 3, the

flux is leavingM and entering A, whilst in Fig. 5 the flux has been

completely reversed. In some intermediate position (Fig. 4) the

algebraical sum of the fluxes entering A must be zero. We see

that, when M advances over the step between the centres of two

polar projections, the alternating current has gone through half

of its values. Hence, the frequency of the alternating current is

pN/60 where 2p is the number of polar projections on the circum-

ference of the stator, and N is the number of revolutions of the

rotor per minute. As the flux in the field magnets of inductor

machines is continually varying, an alternating current will be

superposed on the direct current exciting the magnets.

Before we can find a formula for the electromotive force

generated by an alternator we must make some

supposition as to the distribution of the magnetic
flux in the air-gap. Unfortunately, this distribution

varies in a complicated manner in practice owing to the slots in

the armature, the different ratios of the distance between the

Distribution
of magnetic
flux.

Fig. 6. Lines of force in the air-gap of an alternator.

poles to the polar breadth, etc. If we suppose that the poles are

rectangular and that the distance between them is approximately
ten times the air-gap, then the distribution of the magnetic flux

would be approximately as shown in Fig. 6. The lines of magnetic
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induction in more complicated cases can be found by drawing the

lines of flow between copper electrodes of suitable shape placed on

a sheet of tinfoil and maintained at a constant potential (see

Chapter n). We could also find in this manner the lines of

magnetic induction in the neighbourhood of a slot (Fig. 7). It is

Fig. 7. Lines of force in the neighbourhood of a slot.

important to note that very few lines penetrate far into the slot,

hence, unless it be very shallow, its depth has very little effect on

the distribution of the magnetic lines in the air-gap.

When currents flow in the armature of an alternator, they may
distort the magnetic field very considerably. Later

on in tnis chapter we shall find formulae for the
currents on

demagnetising and cross magnetising forces produced

by these currents. At present we shall consider the

problem from an elementary point of view. Suppose that a wire

carrying a current is placed parallel to an infinite plate of iron

(Fig. 8). The magnetic field produced is similar to that shown in
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the figure. It will be seen that many of the lines of force in the

air meet the iron and complete the rest of their circuit round the

wire as lines of induction in the iron. The shape of the lines of

force shows that the wire will be attracted towards the iron.

In Fig. 9 are shown the lines of induction round a wire

embedded in an iron plate and parallel to its surface. The plate

is supposed to be very thick compared with the depth of the

\

Fig. 8. Lines of force round a current flowing perpendicularly to the plane of

the diagram and parallel to a slab of iron
(/x
= 9).

embedded wire. It is to be noticed that the lines of force are

nearly perpendicular to the surface of the iron. Both the above

diagrams, which are due to G. F. C. Searle, illustrate what is

called the refraction of lines of force on entering iron. Searle has

pointed out one most important advantage gained by leading
the wire through a tunnel in the armature instead of placing it
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on the surface, namely, that the mechanical force experienced by

the wire in this case is much less than it would be if it were on

Fig. 9. Lines of magnetic induction round a wire carrying a current and

embedded in an iron plate. The wire is supposed to be perpendicular to the

plane of the paper and parallel to the surface of the iron (/* =9).

the surface of the armature, although the torque required to drive

the armature and the electromotive force developed in its windings
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are practically the same in the two cases. The iron experiences all

the force that would otherwise come on the conductors. The same

advantage applies in a slightly diminished degree when we have

slots on the surface of the armature instead of tunnels through its

substance. In this case, any tendency to slip is at once checked

mechanically by the sides of the slots.

Suppose that the breadth of the polar pitch, that is, the

distance from the centre of one pole to the centre
Open circuit

>

-L

electromotive of the next measured along a circle which has its
force formulae. . ,

centre in the axis of rotation, is a, and suppose that

b is the breadth of the pole. If we suppose, in addition, that the

* b ---*;

h

a

Fig. 10. Induction wave in the air-gap.

induction density is constant over the polar face, the density of

the magnetic flux in the air-gap will be given approximately by
the ordinates of the curve shown in Fig. 10.

The equations to give the magnetic flux at any point in the

air-gap are
/ ) \ OT.

h from x to x = ^ (a b)

y = h from x = J (a b) to x = ^ (a + b)

y = \- y- ! h from x
-J- (a + b) to x = a

If n be unity, the curves in Fig. 10 become straight lines.
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If n be less than unity, the curves are concave to the axis of x>

and if n be greater than unity, they are similar to the curves

shown in the figure. In the particular case, when n is zero, we

get a rectangle for the curve of flux. When n is infinite, the

density is constant directly under the poles and zero elsewhere.

We can thus get important practical cases by giving various

values to n.

Let x be the distance of a conductor, measured along the

circumference of the rotating armature, from a fixed point in

the air-gap. We suppose that is infinitely near to the surface

of the armature, and that at all points on a line through parallel

to the shaft and parallel, therefore, to the conductors on the

armature surface, the induction density is zero.

Let the density y of the field at x be as shown in Fig. 10, then,

the electromotive force e generated in the conductor is given by

(see Vol. I, p. 26)
HT

e = ly x 10- 8 volts (),

where I is the active length of the conductor in centimetres and

da

dt
-T- is its velocity in centimetres per second. If the armature is

rotating with constant angular velocity, -=- is constant, and hence

the shape of the E.M.F. wave in a simple bar winding will be the

same as the shape of the wave of flux in the air-gap.

If T be the period of the electromotive force generated, we get,

from (ft), by integration

T

[
2

edt = l I" ydxx 1Q-8

Jo Jo

=^ x 10-8
,

where <I>j is the ^ux of induction which enters the armature from

one pole.
T

f
2 T

Now e dt = ^emJo *

v
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where Fis the effective voltage, em the mean value of e, and /the

frequency of the alternating E.M.F. Hence, if there are N f

bars

joined in series on the armature, as in a simple bar winding

(Fig. 1), we have

F=2/tf
/ -<^xlO-8

.

6m

V/em is called the form factor of the wave. We shall denote

it by k, so that

If we have N turns of wire in series, as in Fig. 2, then

since each turn of wire has two active bars in series.

The above formulae show that it is not sufficient to know the

total flux entering the armature from a pole and the number of

windings on the armature in order to determine the effective

electromotive force. We must know, in addition, ho\v the flux

is distributed.

Let us suppose that the distribution of the flux is represented

by the curve shown in Fig. 10
;
then by the equation (/3) given

above, we have

where F is the effective value of y.

Now, from the equations (a)

a-b

,,
hdx,

J

and therefore

Again

Therefore

and

Hence
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The values of k in a few special cases are given in the following

table.

n



18 ALTERNATING CURRENT THEORY [CH.

Note that T(n+l) = nT (n\ F (1)
= 1 and T (i)

= VTT. Other

values of F (n) can be found by means of the following table.

n
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For a sine shaped distribution of the flux, k would be
,

that is, 1-111.

In this case, for a bar winding, the formula for the effective

voltage would be

For example, if V were 1000 volts, the frequency 50 and the

number of bars joined in series round the armature 200, then

<&A would be 4'5 x 106
c.G.s. units nearly.

When an armature coil consists of many turns of wire, it is

obvious that some of the windings will have a

breadthof
h
t

e

he greater breadth than others, and hence, all the

coihf
ture electromotive forces generated in the various turns

of the coil windings will not be in the same phase.

If e1} ez ,
... en be the electromotive forces generated in each

turn of the coil, and e be the resultant electromotive force at its

terminals, we have

e = el + e2 + e3 + ... + en .

By squaring and taking the mean of the values for a whole

period, we get

where a^ is the phase difference between e^ and e2 . Since, by

hypothesis, all these phase differences are not zero,

2 Fx
2 + 22 V,F2 cos ai .a is less than ( V, + F2 + . . . + Fn )

a
.

We see, therefore, that F is less than V1 + F2 + ... +Vn ,
and

hence, the effect of the electromotive forces in the various turns

not being in phase with one another is to diminish the effective

value of the resultant electromotive force generated.
It has to be remembered that the quantities Vlt F2 ,

... Vn only

compound together according to the polygon law in certain very

special cases (see Vol. I, Chap, vm), and hence it is not correct to

say that the above theorem follows geometrically from the polygon
construction.

The formulae for the electromotive force of an alternator on

open circuit, given above, are obtained on the supposition that the

breadth of the armature coils is negligible, so that all the electro-

22
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motive forces developed in the windings are in phase with one

another. These formulae, therefore, fix the maximum possible

values of the open circuit electromotive force. In order to find a

formula which will take into account the breadth of the coil, we

must, as formerly, make some assumption as to the shape of the

flux. If we assume that the distribution of the flux is represented

by the curve shown in Fig. 10, then, it is easy to show that the

shape of the resultant electromotive force wave would be different

from this curve. This makes the calculation of the formula for

the electromotive force very laborious. We shall assume, therefore,

a sine distribution of the flux, since, in this case, the resultant

electromotive force wave is of the same shape as its com-

ponents.

Let us suppose that the armature is cylindrical in shape and

that it is the rotor. We shall suppose that the flux density at

Fig. 12. The breadth of the coil is b and the breadth of the sides

of the coil is c.

right angles to the surface of the rotor on a line, parallel to the

shaft, at a distance as, measured along the circumference of the

rotor, from a parallel fixed line, tangential to the surface of the

rotor, is given by B sin irx\a. The fixed line, therefore, is midway
between two consecutive poles as the radial magnetic force is zero

at all points along it. Let us now suppose that the armature coils

are similar to the coil represented in Fig. 12. The breadth of this

coil is b, and the breadth of the sides of the coil is c, so that b 2c

is the breadth of the narrowest winding of the coil. We suppose
that these breadths are all measured along the circumference of
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the rotor. If there are n layers in the side of a coil (there are

3 in Fig. 12), and if h be the distance between consecutive layers

we shall have (n l)/i equal to c. If m be the number of wires in

a layer, inn will be the total number of windings in the coil. If we

now make the assumption that the E.M.F. developed in a conductor

is independent of its radial depth, we get for the instantaneous

value e of the E.M.F., in volts, generated in a coil

7 n . TTX dx
7 D . TT (x h) dx

e . 10 == mlB sin -y- + wlB sin -=- + . . .

a at a dt

irt . TT \x (n 1 ) h} dx
+ mlB sm -

a dt

j D . Tr(x b)dx j D . TT {x
-

(b
-

h)} dx
mlB sin- -57 w&osin ~j7~ >

a dt a dt

where x is the distance of the end layer of the coil from the fixed

line, arid a length I of each of the conductors is supposed to cut

the flux. Summing this series we get

sin ,-

jj. IAS /D a* |~ \'
JTX

edt . 10s = mlB r- I sm (

. irh
\

i a 2a
Sin ;r-

L

2a
. (ir(x-b) tr(n-l)h\"\,

-siiH -+ - ^ \
dx[a 2a JJ

. wirh
l

~2a . |V6 Tr(n-I)h] <jr(2x-b) ,

sin^ ^ ^-^cos das.

(2a 2a
j

2a

2a

If em denote the mean value of e we get, on integrating over the

half of a period, and noting that the limits on the right hand side

are from to a,

. ntrh
sin

| em .10
8 =

2m.?^. ^sing-^^i ?jsing.sm

Again, since we suppose that the velocity of the rotor is uni-

form, e is sine shaped, and thus

_ 2 V2
"m '

i >

7T
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where Vl is the effective value of e. Also if <$>A be the value oi

the flux entering the armature from one pole, we have

9

Substituting these values of em arid <&A in the above equnti<

and noting that T equals I//, we find that

and thus

where N denotes the total number of turns in series on the

armature and V is the value of the resultant E.M.F. When n

equals unity and 6 equals a, we see that this agrees with the

formula for a simple bar winding when the flux is sine shaped.

To illustrate the effect of the breadth of the coil on the voltage

generated, let us consider a numerical example. Suppose that the

polar step, that is, the distance between the middle points of two

consecutive polar faces measured along the circumference of the

circle on which these middle points lie, is nineteen inches. Since

in practice, the distance between a polar face and the rotor is very

small compared with the radius of the rotor, we can assume

without sensible error that a is 1 9 inches. Suppose also that the

distance between the axes of consecutive slots on the rotor surface

is 2 inches and that the breadth of the largest winding of the coil

is 18 inches. If each coil of the armature has three layers as in

Fig. 12 so that the breadths of the windings are 18, 14 and

10 inches respectively, and the number of windings in each layer

is the same, we have
GTT

1S7T

38

sm
ir IASV. 10- - an - Bn

=
4--J4o/.Y<l>..(

x 0-880.
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When each coil has four layers, the formula becomes

V. 108 = 4-443/A^, x 0-796.

If each coil has five layers, so that the breadths of the windings
are 18, 14, 10, 6 and 2 inches respectively, the formula is

V. 108 = 4-443/A^ x 0-656.

If there had only been two layers, the breadths of the windings

being 18 and 14 inches, then

V. 10
8 = 4-443/A^ x 0-953.

When // is small compared with c we may write nh = c and

?rc/2a for nsm7rh/2a. In this case

rr - inF. 108 = 2 \/2
-
c

7TC . 7T (6
sin =- sin *= sm .

In practice, 6 is generally nearly equal to a, and thus we can use

the formula

F.108

=fv2-sin
\ c a,

In this formula, V is the effective value of the voltage generated,

a the polar step, c the breadth of a side of a coil, f the frequency,

N the number of turns in series between the collector rings and

4> 4 the flux of induction per pole in C.G.s. units which enters the

armature.

The values of \/2 (tt/c) sin TTC/O, for various values of a/c are

given in the following table. It is to be noted that, since c is

the breadth of either side of the coil, the minimum value of

a/c is 2,

c
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and it is necessary that the connection between the two should b

known. This can be found easily by experiment and is generally

shown by a curve which has the voltage between tne terminals on

open circuit for ordinates and the ampere turns per field magnet

spool for abscissae. To find this curve we proceed as follows. An
ammeter is placed in the exciting circuit, and an electrostatic

voltmeter is placed across the terminals of the machine. The
alternator is then run at its normal speed, and, as the excitation is

increased from zero to its maximum value, simultaneous readings
of the ammeter and voltmeter are taken. These values, when

plotted as described above, give the open circuit characteristic.

.

VOLTS

5000

A

15000

Ampere turns of excitation per spool.

Fig. 13. OA is the open circuit characteristic of a 1250 kilo-volt ampere alter-

nator. OB is its short circuit characteristic. TViQ ;fa A /] z? ,,- a,^ f,,n

load volts and amperes.

The points A and B give the full

In Fig. 13 the curve OA is typical of an open circuit characteristic

curve. It will be noticed that almost up to the full working

pressure it is a straight line. It then bends downwards, -f,-
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If we assume that an alteration of the ampere-turns in the

Mold magnet windings does not alter appreciably the shape of the

curve representing the flux in the air-gap, but only alters the scale

of the ordinates of this curve, then, when the machine is run at

((Distant speed, the voltage on open circuit will be proportional to

the flux per pole linked with the armature. To find a formula

connecting the voltage and the exciting ampere-turns nC of the

field magnet we find, first of all, a formula connecting nC and the

tiux <&A entering the armature from a pole. In Vol. I, p. 51, we

obtained the equation

Flux =
,Keluctance

where the reluctance is calculated by the formula l/pS, I denoting
the length of the path of the flux, S its cross sectional area and ft

the permeability at the given flux density. Now, in practice, we

are given the permeability curve of the iron, and so, if we know the

flux, and therefore the flux density, we can calculate the reluctance.

Similarly, in this case, when we know the magnetic force we can

find
//,,

and thus we can find the reluctance and the magnetic flux.

In proving the above formula we considered the case of an infinite

solenoid so that the magnetic force is assumed constant at every

point on the cross section. We saw, however, that in the case of a

finite circuit, like an anchor ring uniformly wound with insulating

wire carrying a current, the magnetic forces to which the iron is

subjected are not constant but are greater at points near the inner

circumference of the ring than they are at points near the outer

circumference. If the permeability corresponding to the given

magnetising forces be represented by a point on the steep part of

the permeability curve, so that a small variation in the value of

the magnetic forces makes a large variation in the value of the

permeability, then the variation of the flux density over the cross

section of the ring may be large. It follows that l//nS, where
/JL

is

the permeability corresponding to the density </$, may not give
the true value of the reluctance. The formula, therefore, which is

used in practice for the magnetic circuit is only approximately
correct.

In a dynamo, the path of the flux in a field magnet is partly

in the iron and partly in the air. It is customary to extend the
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magnetic analogy of Ohm's law to this case, the reluctance of the

paths in air and the paths in iron of the flux being calculated

separately by the formula l/pS, and the sum of these quantities

being given as the total reluctance of the magnetic circuit. In

practice, it is only possible to find these reluctances approximately,

and in the case of armatures with slots the calculation is a difficult

one. The methods of approximating to the values of these reluct-

ances are explained in treatises on the design of direct current

dynamos and a method of finding the reluctance of the air-gap is

given in Chapter n. Formulae containing reluctances, which can

only be calculated roughly, have a limited use. They are, however,

a help to the designer as they show him the relative effects

produced by alterations in the various parts of the magnetic
circuit. In what follows we shall assume that the armature has

a smooth surface.

In practice, it is customary to consider ampere-turns nC

instead of magnetomotive force 4?rn(7/10. To simplify the for-

mulae, therefore, we shall denote the reluctance of a magnetic
circuit by 4?r(^/10 so that the fundamental equation becomes

nC

Let us now consider the magnetic flux linked with two adjacent

poles N2 and S2 in a multipolar field Nl} Slt N2 ,
S2 ,
N3 ,

.... The

flux proceeding from N2 is linked with both Si and S2 ,
half of it

coming back by Si and half by S2 . We shall consider the flux

linked with Nz and S2 . This flux will be half the total flux

leaving the pole N2 . On leaving N2 an amount <E>
fl/2 of this

portion of the flux will leak directly through the air to the

pole S.2 . Let the reluctance of the path in the air of this leakage

flux be 47r(flrt/10. The remainder <^/2 of the flux leaving N2 and

linked with S2 will after passing across the air-gap, the reluctance

of which we will denote by 47r(R7/10, enter the armature. Let the

reluctance of the path of the flux <I>^/2 in the armature between

N2 and S2 be 4?r(Rj/10. After crossing a second air-gap (4^^/10)
this flux will enter S2 . The flux (3>^ + <J>a)/2 will complete its

path through the pole S2) then through part of the iron ring to

which N2 and S2 are both fixed, and finally through N2 to the
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polar surface from which it started. We shall denote the reluct-

ance of this part of the magnetic circuit of (<^+Oa)/2 by 4 <

7r(P//10.

It is to be noted that the reluctance of the air-gap from the whole

of the pole ofN2 to the armature will be 4wr(Sy/20, and in calculating

2nC

Fig. 14. Electrical analogy with the magnetic circuits linked with a field

magnet and the two field magnets adjacent to it.

the reluctance of the path of (<&A + <
a)/2 in the field magnets we

assume that this path occupies half of the iron of the field magnets.

Making use of the electrical analogy, shown in Fig. 14, we get

the following equations :

where
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We also have (GIA -f 2(R^) 3>A = a <&a)

and thus cj> 4 =

In practice (Ra is large compared with ($/ ((RA + 2(J^), and

therefore, we have approximately

Now, when the magnetising force is not large, the permeability of

the iron or steel is very high, and thus, since reluctance is in-

versely proportional to permeability, (R/+ (R^ is small in comparison
with 2(R0. But the value of 2(R

ff
is independent of the magnetising

force, and therefore, the ratio of nC to 3>A is very approximately
constant if the magnetising forces are not large. Thus the curve

having <&A for ordinates and nC for abscissae will be very approxi-

mately a straight line until nC becomes large. When nC is large

the iron in the path of the flux becomes saturated, and so (R/+ (R^

becomes appreciable and the curve giving the armature flux <&A in

terms of nC begins to bend downwards. If the relative distribution

of the flux in the air-gap does not alter as nC is increased, V will

be proportional to <&A ,
and thus we would expect the open circuit

characteristic to be similar to the curve A shown in Fig. 13. In

machines with large air-gaps, the open circuit characteristic is :

almost an exact straight line. In machines with insufficient iron,

or iron of inferior quality, in the field magnets the characteristic

curve bends down rapidly and the loss of power due to the large

excitation required is excessive.

If we neglect the breadth of the coils in the armature circuit

of an alternator, the formula for the open circuit
Flux curves.

electromotive force, namely

V- 4>kfN<&A x 10~8
,

enables us to find &A . From Fig. 14 we see that

and therefore <S>A + <Da = A *

0%

where v =
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The coefficient v is sometimes called the '

leakage coefficient,' and

sometimes
'

Hopkinson's coefficient/ Hence, if we multiply the

ordinates of the open circuit characteristic by 1Qs

v/4<kNf, we get

the curve showing the total flux in the field magnets for various

t ations.

In practice, the calculation of v is difficult. It is to be noted

that whether the armature or the field magnets rotate, the path of

the flux in the field magnets is continually rotating relatively to

the iron sheets of which the armature is built up. It follows that

the polarity of the molecules of the iron in the armature alter-

nates with the frequency of the alternating E.M.F., and if the flux

density in it be high, the loss in the iron of the armature due to

hysteresis and eddy currents will be considerable. This will affect

the accuracy of the fundamental magnetic equation. Assuming,
however, that this introduces no serious error, we must calculate

the values of (ftrt , (RA and (Rg in order to find v. This calculation

is very difficult as the paths of the flux are not simple geometrical
curves and the permeability of the iron in the various parts of the

magnetic circuit is not accurately known. We can, therefore, as a

rule, only make a rough approximation to the value of v by calcu-

lation. An average value for v in good modern machines would

be about 1'2, but occasionally it is 1*3 or even higher. For a

particular type of machine, however, designers can estimate its

value with fair accuracy, and thus, by the aid of the formulae given

above, it would be possible to predetermine the open circuit voltage
of the machine for any excitation and at any speed. We could

therefore predetermine the open circuit characteristic curves of

the machine for various speeds.

If we short circuit the terminals of an alternator through an

ammeter when the field magnets are only feebly

charactlristic.
excited

>
the current will not be large. This is due

to the small value of the electromotive force generated
arid the appreciable impedance of the armature itself. If we

now gradually increase the excitation, the machine running at

its normal speed, we can get a series of simultaneous readings

of an ammeter in the exciting circuit and of the ammeter short

circuiting the alternator. Plotting out a curve (OB, Fig. 13),
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having ampere-turns of excitation per field magnet spool foi

abscissae, and short circuit amperes for ordinates, we get the shoi

circuit characteristic. The curve is practically a straight line

The excitation required for the electromotive force to produce th<

full load current in the short circuited armature is much less tl

that required to produce the full load current in the armature

together with the voltage required for an external non-inductive

load. The phase difference, however, between the current and the

E.M.F. generated is greater in the case of the short circuited

armature and one effect of a lagging current is to demagnetise

the field. In some machines this effect is very marked, and

appreciable magnetising currents are required in order to get the

short circuit characteristic. In order to understand why a lagging

current tends to demagnetise the field magnets, we shall consider

in detail some simple armature windings.

A simple method of studying cylindrical (drum) armature

Wave windings is to imagine that the winding is cut across

windings. parallel to the axis of the drum and developed out

into a plane. In Fig. 15 a diagram of a four pole alternator is

Ufr-
v

V
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of the machine and the points a : and a2 coincide, when the winding
is on the armature.

If the adjacent active conductors of the winding Titti (Fig. 15)

be at a distance from one another equal to the polar step, the

electromotive forces developed in adjacent conductors will be in

exact opposition in phase, and thus, since the conductors are

connected so that the E.M.F.s act in the same direction round

the winding, the effective value of the resultant E.M.F. between
r

l\ and rtj will be equal to the sum of the effective values of the

E.M.F.S developed in the four active conductors between Tl and c^.

Similarly, the effective value of the resultant E.M.F. between jP2

and 2 will be the sum of the effective values of the E.M.F.s

developed in the four active conductors between these points.

The electromotive forces, however, developed in the two windings

TiCij, and a.2 T2 will only be in phase when the windings are super-

posed. Thus a differential action between the various E.M.F.s

developed can only be avoided by using a simple bar winding.

If the distance between any two conductors which pass across

the face of a pole in Fig. 15 be greater than the minimum

distance between the poles, then, when one conductor is leaving

one pole the other will be over the next and, at this instant, the

arrow heads, indicating the direction of the E.M.F.s developed

in the two conductors, will be pointing in opposite ways. The

differential action, therefore, will be excessive. In practice, the

displacement of the two windings relatively to one another is

made less than the minimum distance between the poles. We
can also have any number of windings similar to TI<II and T2a2 in

Fig. 15, but the displacement of the two which are farthest apart

should be less than the minimum distance between the poles.

This simple form of winding is called a '

distributive
'

wave

winding.

When the terminals of the machine are connected through a

large non-inductive resistance, the currents in the conductors will

be flowing in the direction of the arrow heads (Fig. 15), and their

values will be large at the instant pictured in the diagram. The

armature current will produce a magnetic flux leaving the paper

perpendicularly at v and entering it perpendicularly at <r. It will

thus produce a transverse magnetisation of the field in the same
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way that the corresponding effect is produced in direct current

machines. The magnetic flux on the trailing side of the pole

pieces will be strengthened and that on the leading side weakened.

We should expect, therefore, that this transverse magnetisation
would have an appreciable effect on the shape of the wave of the

electromotive force generated, and on the distribution of the heat

generated by eddy currents and hysteresis in the pole pieces. This

is found to be the case in practice.

A quarter of a period after the armature current has its

maximum value, the poles will lie between the windings, as in

Fig. 17, and the current will be zero. The current now changes

sign and at the end of the next quarter of a period it attains a

maximum value. Hence it is easy to see that in this case, namely,
when the load is non-inductive, the mean value of the magnetising
force exerted by the armature currents on the field magnets is

zero.

In Fig. 16 a simple lap winding is shown for the alternator

represented diagrammatically in Fig. 15. It will be

seen that, so far as the electrical effects produced are

concerned, the lap windings and wave windings are identical. It

Lap windings.
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is lagging by ninety degrees, the magnetising effect of the

armature coils directly opposes that of the field coils and so the

flux in the air-gap is weakened.

current leading
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in phase by ninety degrees. The current which has a maximum
value / cos ^r is in phase with the electromotive force developed
in the conductors of the armature, and it produces therefore

only a transverse magnetising effect on the field. The current

/sin^sin(&> 7T/2) lags 90 behind the electromotive force and

produces a direct demagnetising force on the field magnets. This

method of splitting the magnetising force due to the currents in the

armature into two components at right angles to one another is

known as the method of two reactions and was first stated by
Blondel.

Fig. 18. The polar step equals a. The breadth of the polar flux entering the

armature equals b. The distance between the axes of the slots equals b'.

We shall consider the case of a machine with a simple coil

winding on the armature, as in Fig. 2, and we shall

calculate the mean value of the demagnetising ampere-
turns acting on the field due to the current in the

armature. Let there be 2Nj_ conductors in a slot, and

therefore N-t t/urns per pole. We shall suppose that

the magnetomotive force, due to the current in an armature coil,

acting on a given tube <>f magnetic flux in a field magnet, changes

from (47r/10) 1̂ /sin\/rsin(ft)^ 7T/2) to zero, or vice versa, when

the tube passes through the axis of a slot. We shall assume that

the breadth of the arc intercepted on the cylindrical armature by
the flux leaving a pole is b, and, since the flux leaving a pole spreads

Formula for

the demag-
netising effect

of the lagging
component of

the current.
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out in the air-gap, b will be greater than the breadth of the pole.

Let us assume also that the density of the flux entering the

armature is uniform. Let b' be the breadth of an armature coil,

measured along the circumference of the armature, between the

axes of the two slots (Fig. 18) and let a be the polar step, that

is, the distance between the middle points of consecutive poles

measured along the arc of the circle on which these middle points

lie. As the air-gap is very narrow compared with the radius of

the rotor we may, without sensible error, assume that the circum-

ference of the armature is 2pa, where 2p is the number of the

field poles. For convenience of drawing, we have shown the

sections of the polar and armature faces as if they were straight.

Suppose now that the faces of the poles of the field magnets are

moving with a linear velocity Za/T, and let (Fig. 18) be taken

as the origin from which the distance x (Fig. 19) of the end of the

!

14
i

Fig. 19. In this diagram x is greater than - but is less than a ^ .

2 2

trailing flux is measured. If the space x be described in time t,

then, since the air-gap is very narrow, we may write

x^Zat/T^awt/Tr, since c0 = 27r/T,

and therefore cot = TTX/CL.

Hence, the lagging component of the current may be written

in the form / sin
i/r

sin (irxja Tr/2) or / sin
-vjr

cos Trx/a.

We only need to calculate the mean value of the magnetising
turns produced by this current during a quarter of a period, as

this will be the same as over a whole period, for the frequency of

this magnetising force acting on a pole is double that of the alter-

nating current. We shall first find expressions for the magnetising
force during various intervals of the quarter period, and then

calculate its mean value.

32
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The first interval of time is the time taken by x (Fig. 18) to

increase from zero to ^ (b b'). In this case, the demagnetising
turns of the armature coils act only on the fraction b'/b of the

total flux entering the armature. The magnetising ampere-turns,

therefore, from x equal to zero to x equal to -|(6 6'), are

(b'/b) Nil sin
-\jr

cos Trx/a.

When as (Fig. 19) is greater than (b b') but less than

the coil embraces the fraction [b' {x -J (b b')}]/b of the total

flux. The value of the magnetising ampere-turns, from x equal

to J (b b') to x equal to a - \ (b + b'), is therefore equal to

-
I (i (& + &')

-
^! #i/sin -f cos .

When a? (Fig. 20) is greater than a ^ (b + b'), some of the flux

from the pole is embraced by the adjacent coil which tends to

K X ->

N

Fig. 20. In this diagram x is greater than a --^ but is less than .

magnetise it in the opposite direction. Hence the magnetising

ampere-turns, from x equal to a ^ (b + b') to x equal to J a, are

_ *
[&'
_ {#-1(6 - 6

X

)}
- ^ -

(a
- i FTF)}] JVj/sin ^ cos ,

Oj

which is equal to

fa 2x\ AT r . irx
= iViy sin -vjr cos .

V b ) a

If A, therefore, denote the effective value I/*/2 of the armature

current during the time the field magnet takes to move from to

a/2, and if aN^A sin ^r denote the mean value of the demagnetising
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ampere-turns, we have
b-v

a f
2

6' , r r . 7TX ^

iA sm
A/T

.
- =

y-N^ sin
\/r

cos ax
Z J Q U d

b+V
a-

f
2 1 /b + V \TVT-

I ^-- a; Nils
J j_6/ 6 V 2 /

r/a&+6'V

cos
a

cos

Putting ^ equal to Trx/a and simplifying, we have

(a
-

V

Noting that /0 cos ^c?^ = 6 sin ^ + cos 0,

we easily find that

OL 6' sin
2 \/2 Jo

ir

F6 + 6'
0_a0 0_^L cos i\

n ~
ra

*~

L 2 ~^T
S

7T
C(

Jjr

IT

-f a sin sin cos 6
* -Li*

T /T
sin TT- (6

6 + 6' f
. 7T , ,

/x
. 7T /7 T/X

+ -
jsm ^ (6 + 6')

- sm ^ (6
- 6 )
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TT TT 7
-,-A TT ,, ,, N TT

7T

2a . TrV . Trb= sm -r sin TT- .

TT 2a 2a

4\/2a . TT&' . Trb
Therefore a = 07 sm sm ^- .

2a 2a

This formula enables us to find the values of a, and thus, when

the current A in the armature and the angle -v/r
of lag of this

current behind the electromotive force are known, we can readily

find the mean value a^A sini/r of the demagnetising ampere-
turns per pole. If we suppose that 6 is equal to a, then, in the

case of a simple bar winding a is 0*58 nearly.

When
->/r

is negative, that is, when the current is leading,

aN^A sin ^r is also negative, and thus, in this case, the armature

reaction strengthens the field.

If the breadth of the slot be c and if it contain many con-

ductors, we can get a more accurate formula as follows. Let h be

the distance between the axes of two neighbouring wires which

are equidistant from the axis of the rotor, and let nh be equal to c.

Calculating the demagnetising force for each turn separately, and

adding the results, we find that

4a , r T . . Trb

O.N!A sin
i/r
=

--j-iVi/sin ^ sm
7T 2>CL

. 7r(b"-h) . 7r(6
//

-3/0 . 7r(b"-2n-Ih)
sin -

(- sin - _ - + ...+ sm
2a 2a 2a

x
,

?i

where b" is the distance between the outside edges of the two

slots. Summing the series we get

J7T&" TTC] . 7TC

I

sin ^
. 7TC

n sin r
2an



I] THE COMPENSATING AMPERE-TURNS 39

Now b" equals c + b', where b' is the distance between the axes of

the slots. Thus, when n is large, so that we can write 7rc/2an for

sin ?rc/2a?i, we get
. TTC

4a A/2 . irb . TT&'
""

2a

ire7T-

sin <r- sin
2a

It will be seen that the factor sin -^- corrects for the breadth of
TTC 2a

the coil. The following table shows how this factor varies with

the ratio of c to a.

c

(1
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where n is the number of turns on one pole of a field magnet

winding, and C is the exciting current. Let us suppose that the

number of coils in the armature equals the number of field

magnet poles, and that N^ is the number of windings in a coil, so

that oiNlA sim/r is the measure of the mean demagnetising effect

of an armature coil on a pole, when the current in it is A, and

Bin

2 (71 C+n 'C')

4-2(8,

Fig. 21. ra'C" represents the ampere-turns per spool required to keep the flux

in the armature constant. aN^A sin
\f/ represents the demagnetising ampere-turns

due to lagging currents in an armature coil.

cosi/r is the power factor. Let n'C' be the compensating ampere-
turns on each field magnet and let 3>a

f
be the leakage flux in
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the air. Our equations in this case are

4 (ntfWCO-tfX^ + <*>')

= (flU + 2(R,) 3>A + 4aJM sin ^ = (Ra <Da'. . .(2),

since the flux in the armature is made the same in the two cases

and we suppose that (fy remains constant.

Subtracting (1) from (2) we get

sin

and therefore n'C' = J (<fy + (R

l + aN.A sin ^.

Let us now suppose that (fy does not remain constant, and that

its value is (R/+ A(R/ when the leakage flux is <!></. In this case

equations (2) must be written in the form

= aa .................. (3).

Hence, by means of (1), we get

4riC' - (<R/+ AtJ?/) (<E>a
7 -

<!>)
-
Ad?/ ( A 4- ^>a)

= 4a^^l sin ^.

From equations (1) and (3) we easily find that

sin = (Ra (Da
7 - ^> )

Thus, by substituting for (^>a
' - 3>a) and (^ + <E>a) their values

and simplifying, we get

(R/+ACRA Ar .= 1 + ^-^- O^iJ. sin
i/r

We can find A(P/ from the open circuit characteristic by the

following construction. The flux curve OP (Fig. 22) can be con-

structed from the open circuit characteristic when we know the

form factor k of the wave of the electromotive force. Also if we

can calculate (Ra , (Rg and (RA we know v, and thus by p. 28 we can
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construct the curve of total flux OK (Fig. 22). When the exciting

ampere-turns are represented by ON, NP will be <&A and NK will

be A + <$a . Therefore PK is equal to 4>a . Make KL equal to

^aN^A sim/r/(Pa ,
which is equal to <I>a

'

<E>a ,
then PL will be <!></.

Hence NL will represent the total flux in the field magnet, and if

Flux

N Ampere-turns

Fig. 22. The ordinates of the curves OKM and OP give the total field flux per

pole and the flux per pole passing into the armature respectively.

and cot MON=(R

we draw LM parallel to ON to meet the curve of the total flux

in M, the abscissa of the point M will give the ampere-turns

required to produce the flux QA + Qa
'
in the field magnet. But

ampere-turnsr - l
-fl
flux

and hence, when (R/ is known, Ad?/ can be found.
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Let us suppose that, instead of keeping the magnetic flux

through the armature constant, we maintain the
'he compen- O

flux in the field magnets constant. In this case,

we can find a simple formula for the compensating

ampere-turns per pole. Using the same notation as

before, our equations are

ating ampere-
urns required
keep the

ux in the
eld magnets
onstant.

nd

sn

nd, by hypothesis,

^herefore 4w'(7' = sn

sin

nd thus n'C' = - N1A sin

vhere i; is Hopkinson's coefficient.

We also have

Thus, in order to prevent the flux in the field magnets falling

below its no-load value, when the current flowing in the armature

windings is A and the power factor is cosi/r, the ampere-turns

acting on a field magnet must be increased by a^Asm^/v.
The flux, however, entering the armature from a pole will be

diminished by

We shall now consider the effect of the component /cos
-v|r

sin wt

of the armature current which is in phase with the

electromotive force. This component produces a

transverse magnetisation of the field magnets, so

that, in rotating field machines, the field in the air-gap under the

Transverse
magnetisation
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leading polar horn, that is the leading end of the polar piece, is

weakened, and that under the trailing horn is strengthened by this

component of the current. When the armature rotates, a similar

distortion of the field is produced; in this case, however, the other

end of the polar piece is the more strongly magnetised, as the effect

is the same as if the armature were at rest and the poles rotated

in the opposite direction. In order to get a measure of this dis-

torting effect, we will find a formula for the difference between the

magnetising ampere-turns due to this current acting on the fluxes

in the two sides of a field magnet pole.

Let the arc intercepted by the polar flux on the circumference

of the armature be b, and suppose that this arc is greater than &',

the distance, measured along the circumference, between the axes

of two slots in the armature in each of which there are 2JVi

conductors. If a be the polar step, we can express the com-

o L

Fig. 23. Eelative positions of the pole and the armature coil when x lies

between and %(b-V).

ponent of the current which is in phase with the E.M.F. in the

form / cos ^ sin irxja, where x (Fig. 23) is the distance of the end

of the trailing flux from a fixed point on the armature. We
shall consider the difference of the effective magnetising ampere-
turns of the coil, acting on the fluxes coming from the leading

and the lagging half of the polar face of a field magnet, as this

difference will be a measure of the distorting forces acting on the

field. We shall find expressions for this difference during the

quarter of a period, starting from the instant when it is zero.
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t is to be noted that the pulsations of the cross magnetising force

n the poles go through all their values in the half of a period.

Let us first suppose that x (Fig. 23) is less than (6 &')/2. In

his case, the armature coil b' remains inside the polar flux. The

Affective number of ampere-turns acting on the flux traversing

he trailing half of the polar face will be

(672 + x)/b . -ZV^i/ cos ^ sin (ira/a),

md the effective number of ampere-turns acting on the flux

-raversing the leading half of the polar face will be

(672 x)/b . NJ cos
i/r

sin (TTX/O).

Che difference, therefore, between the magnetising turns on each

ialf of the polar flux will be

1 (V fV \] T . TTX 1
T. I

-

-j-
. . /I H> J.

il cos ^r sin = - sm
7TX

a

Now, in the figure, we have made b' greater than a^b, and thus

'J/2
is greater than a ^ (b + b'), hence, when x (Fig. 24) is less

' O ~ " "*~~ """ """~^

Q

Fig. 24. Relative positions of the pole and the armature coil when x lies

between J (6
-

6') and a- (& + &').

than (& + &') but is greater than (6 6
x

)/2, the difference of

the number of ampere-turns
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When x (Fig. 25) lies between a-%(b + V) and 672, it will be

seen that part of the polar flux is surrounded by the current in

O
I

<.!__. i

I

Fig. 25. Relative positions of the pole and the armature coil when x lies between

a _ (& + &') and \ b'. We have supposed that &' is greater than a - % b.

the next coil, a side of which passes down the slot at Q, and the

magnetising ampere-turns due to this coil act in the opposite

direction to those of the first coil. Hence the difference of thi

ampere-turns

/b' \ f b + b'\] ,r T TTX
( x\ + sc ( a

J^iVj/cos -fy
sin

1 . - 7 \ TIT T I
I?

T (2x a + b) iVj/ cos -^ sin .

b^ a

l'- ->i

...... ar
-

Fig. 26. Relative positions of the pole and the armature coil when x lies

between \b' and \a.
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When x lies between &'/2 and a/2 (Fig. 26), the difference

the ampere-turns is

lib b'\ b + b'

rrrfp

or r (b + b' a) N^I cos
-fy

sin .

u a

Hence, if fSN^A cos
-v/r,

where A is the effective current, denote

the mean value of the difference of the ampere-turns acting on

each half of the polar flux over the quarter of a period, we have

b-V b+ b'
a-

' ab f

'

. TTX , f
2 / b - b'\ . TTX ,

.- fi
= 2a; sin dx + a? H ^ sm c?d7

2V2
H

Jo a j b -v \ 2 J a
2

a

2^-a-f&)sin dx + (b + b'-a) Psin
6+6-- - a J &' a

7TO /, 7TO\
sin -^- 1 - cos .

2a \ 2a/

a

Therefore

It is easy to see that the mean value of fiNiA costy over the

'whole period is the same as over the quarter of the period. This

expression, therefore, gives us the mean value of the magnetising
turns of the armature current which act so as to distort the

magnetic field in the air-gap. It is due to C. F. Guilbert.

We can also show that the above formula for PN-^A costy is

true when the distance b' between the axes of the slots is greater
than the breadth b of the polar flux entering the armature, and

also when b' is less than a ^b. It is therefore always true.

Let us now consider how a and /3 vary with the breadth of the

polar flux and with the breadth of the coils. We have shown

that

4V2a . Trb' . -rrb

a = -r sin -=- sm
,

7r
2b 2a 2a

Q 4 V2 a . Trb'
/., 7rb\and P = - -rr- sm - 1 cos 1 ,

7r
2 6 2a V 2a/

where b is the breadth of the arc intercepted on the armature by
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the flux leaving a pole, and b
f

is the breadth, measured along the

circumference, of an armature coil. The greater the value of b', as

long as it does not exceed the polar pitch a, the greater will be

the values of a and /3. We can see also that the greater the value

of 6, that is, the broader the poles, the greater will be the values of

both a and (3. Again, we have

Trb
^=tan

,

a 4a

and thus, the broader the poles the greater will be the ratio of the

transverse magnetising coefficient to the direct magnetising
coefficient a.

In the following table the values of a and /3 for various values

of b/a are given for the case when the breadth of the coil equals

the polar pitch, as, for example, in a simple wave winding.

In this case, we have

4\/2aa= - T sin =
7T

2 b 2a r sin ^- ,

b 2a

and /9
= a tan

b

a
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Let us suppose that the distance between the axes of the slots

is 16 inches and that the breadth of the polar flux

entering the armature is 18 inches. Let the polar step

be 20 inches, the number of conductors in a slot 48 and

the effective value of the current, which we assume follows the

harmonic law, 100 amperes. Then, in our notation,

a = 20, 6 = 18, V = 16, ^ = 24 and 4 = 100.

The ampere-turns aN^A sin
A/T acting on the direct flux

4V2a , TT&' . TT&

j JYj-4 sin -\lr sm sm ^~
7r

2b 2a 2a

= 1435 sin
A/T.

The ampere-turns pN-^A costy acting on the transverse flux

cos

= a.NlA cos i|r tan T4a
= 1225 COS

i|r.

The following table gives the values of aN^A sin ^r and

for various power factors.

cos,/,
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Let us now consider the relative magnitudes and phase dif-

ferences of the electromotive forces generated in the

motive
e

forces armature and of the potential difference at the ter-

Smature. minals of the machine for loads of various values and

power factors. We shall assume that the open circuit

and the short circuit characteristics of the alternator are known.

We have already discussed the principle of two reactions, and we

have found formulae for the direct and transverse magnetising
turns acting on the field which are due to the currents in the

armature when these currents follow the harmonic law. Let us

suppose that the equation to the open circuit characteristic is

V=f(nC),

where V is the value of the open circuit voltage, and nC represents

the ampere-turns of direct current excitation acting on a field

magnet. We can always find from the curve the value of F cor-

responding to a given value of nC, or the value of nC corresponding
to a given value of V. Now if we have a current, of effective

value A, in the armature, and if it lags by an angle T/T
behind the

E.M.F. generated in the armature conductors by the direct flux, the

mean value of the magnetising ampere-turns acting on each

magnet will be nC a.NlA sin fy. Hence we can find at once,

from the open circuit characteristic, the E.M.F. f(nCa.N^A sini/r)

generated by the direct magnetic flux.

We have shown that the mean value of the magnetomotive

force, due to the armature current, acting on the transverse flux is

4 <

7r/3iV1 .4 cos i/r/10. Since it always acts in one direction, the

fluctuations in the value of the transverse flux due to it are small

owing to remanence. We shall assume that it gives rise to a

constant flux. Let the electromotive force generated in the

armature by this transverse flux be denoted by F^fBN^Acos^).
This E.M.F. will be proportional to A cos -^, and hence it may be

written in the form F({$NiA). costy. When the E.M.F. generated
in a coil by the direct flux due to the armature currents is zero,

the E.M.F. due to the transverse flux is a maximum or a mini-

mum. It follows, therefore, from our assumptions that the E.M.F.S

generated in the armature by the direct and the transverse flux

differ in phase by ninety degrees.



l]
THE ARMATURE E.M.F. 51

We have seen that some of the field flux does not enter the

armature. Similarly, some of the flux due to the armature current

is not linked with the field windings. As the current in the

armature varies, this leakage flux varies also, and a back electro-

motive force is set up which acts in exactly the same way as the

flux inside an inductive coil. This electromotive force is called

the leakage E.M.F. of the armature. It is approximately propor-

tional to the effective value A of the armature current. If the

alternator is working on an inductive load, the power factor of

which is cos
-v/r', then, we have the following E.M.F.S acting round

the circuit: an E.M.F. f(nC aN^A sin
-^r)

due to the direct field

and an E.M.F. F(^N1A cos-v/r) due to the transverse field. These

E.M.F.S differ in phase by ninety degrees. In addition, we have a

leakage E.M.F. which is approximately proportional to A, and

differs from it in phase by an angle which, since this leakage E.M.F.

is appreciable and does very little work, is almost ninety degrees.

We have also the E.M.F. V expended on the external load, and

an E.M.F. R . A employed in sending the current A through the

resistance R of the armature.

In order to see the relations between these electromotive

forces, we shall make the assumption that they can

De represented by a series of vectors in one plane and

construct a diagram (Fig. 27). In this diagram, which

is due to Fischer-Hinnen, OD represents the E.M.F. due to the

direct flux, OA represents the potential difference R. A which is in

phase with the current, and the angle DOA is
*fy. CD, which is

drawn at right angles to OD, represents F^^Acos^), or, as it

may be written without appreciable error, F (/3NlA)cos'^, since

the reluctance of the iron in the path of the transverse flux is

small compared with the reluctance of the path in air, so that

the transverse flux and the E.M.F. due to it are approximately

proportional to the ampere-turns. AB represents the potential

difference V across the terminals of the alternator and the angle

BAN is
-v//,

where COST// is the power factor of the external load.

BG represents the armature leakage E.M.F. and is generally denoted

by LeoA, where L is a constant and a> is STT/,/ being the frequency
of the alternating current. We have made the assumption that
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this E.M.F. does no work, and so BG has been drawn at right

angles to OA. Hence if BC and OD be produced to meet in E,

the angle CEO is TT

N

Fig. 27. Diagram of the E.M.F.S in an alternator circuit.

OD= the E.M.F. due to the direct flux.

DC the E.M.F. due to the transverse flux.

BG= the E.M.F. due to leakage of flux from the armature.

AB = V, the P.D. between the terminals.

OA=R .A, where R is the resistance of the armature increased by x per cen

to take account of eddy currents.

Now we have

Also

=f(nC - aNiA sin

=f(nC - O.N.A sin

= BC+ GE
T GD= LeoA H

+ CD tan

sn

COS
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In practice, it is customary to increase jR . A (OA in the figure)

by about fifty per cent, in order to take into account roughly the

eddy current losses in the armature. The values of a and ft are

found from Guilbert's formulae given on p. 47.

When the resistance of the armature is negligible, the diagram

simplifies to that shown in Fig. 28.

In this figure the angle EON is ty,

OE=f(nC-aN1A sin ^) + F^N.A) sin ^,

BE = La>A+F(/3Nl A),

and OB = the potential difference across the machine terminals,

= V.

Fig. 28. Working diagram of alternator when the armature resistance

can be neglected.

In Fig. 28, ON indicates the phase of the current, and the cosine

of the angle BON is the power factor of the external load. It will

be seen that the value of BE is independent of ^r and ^r', and

varies only with the current A. It has to be remembered that

we are neglecting the effects on the E.M.F. of the small pulsations

of the flux due to the armature reactions.
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For a given value of A, if OE were to remain constant, the

locus of B would be a circle round E as centre. When the power
factor of the external circuit is unity, OB will be at right angles

to EB. When the power factor of the external circuit is less than

unity and the load is inductive, the angle QBE will be obtuse;

if the load acts like a condenser, the angle QBE will be an acute

angle. If we assume, therefore, that OE remain constant for a

given value of A, we see that the potential difference at the

terminals of the machine, provided that the current A remain

constant, diminishes as ^r increases from to 90 and increases

as i// diminishes from to 90.

We see from Fig. 27 that, when the armature terminals are

short circuited, AB is zero, for AB represents the

the
U
short terminal potential difference V. We have, there--

fore, in this case

BE = OE sin

and thus

LwA + F($NiA) =f(nC - a^A sin ^) . sin ^ + F03N.A) . sin2^ .

Now in finding the short circuit characteristic the field magnets

must, as a rule, only be excited feebly, otherwise we should get
such large currents that there would be a serious risk of damaging
the armature coils. The iron, therefore, is not saturated, and we

may write

f(nC - a^A sin ^) = k (nC
- aN^A sin ^),

where k is a constant which can be obtained easily from the open
circuit characteristic. We can also write k'^N-^A for F (^N-^A)
where k' is a constant, and thus, substituting these values in the

above equation, we get

A {Zo) + k'/SN, + (ko.
-

k'j3) N, sin2

^} = knC sin ^.

Hence, when $ is a constant, the ratio of A to nC is constant, and

the curve showing the relation between the two is a straight line.

In practice, ^r is a large angle, and so, putting it equal to 90,

we get

A =
-y
-

j ^ . nC,
La) +

as an approximate equation to the short circuit curve. For high
values of the excitation, the open circuit characteristic curves
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downwards and k diminishes. For high values of C, therefore,

the short circuit characteristic would also curve downwards.

The synchronous impedance of an armature, for a given ex-

citation, is defined to be the ratio of the open circuit voltage, at

this excitation, to the short circuit amperes at the same excitation,

the machine running at its normal speed in both cases. Hence

we find that

y
the synchronous impedance = -

For low excitations this expression equals Lea + kaNl and is con-

stant. The value of f(nC)/knC, however, and consequently the

synchronous impedance, diminishes as the excitation is increased.

If we plot out the terminal potential differences for various

values of the excitation, the armature current being-
characteristics .

on wattless wattless and of constant magnitude A, we get two

curves, the load acting like a condenser or like a

choking coil respectively. These curves are called the con-

denser and inductive characteristics respectively. By altering

the value of the current A, we can get a series of these charac-

teristics. We shall now consider some of the properties of these

curves. They can be obtained experimentally by putting a variable

choking coil and a variable condenser respectively across the

terminals of the machine. When the choking coil is between the

terminals, we alter its inductance so as to keep the current

constant at all excitations, and when we have a condenser load,

we alter its capacity so as to keep the current constant. In

practice it is more convenient to use a synchronous motor

(Chapter iv) instead of choking coils or condensers. If this type
of motor be put across the terminals of the alternator, then, by

varying the excitation of the motor, we can make the current have

a large angle of lag or lead. For feeble excitations, the current is

lagging behind the potential difference at the terminals, and for

strong excitations it is leading.

When a synchronous motor is employed the cosine of the

angle of lag or lead can be made less than O'l.
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In Fig. 27 if we project AODGB on AB, we get

V + LeoA sin ty' + RA cos ^' = cos (^ - ty')f(nC uN^A sin

+ sin (<f
-

^') cos

When the current is lagging 90, ifr
is 90, and therefore

V+LwA = sin nC -aA sin - cos

O B O' M N

Fig. 29. OP is the open circuit characteristic. PN gives the terminal volts

when the magnetising turns of the field magnets are represented by ON. O'P' is

the characteristic on a wattless inductive load when the current in the armature

is maintained constant. KB= QC= the armature leakage volts, BO'=CP'= ihe

demagnetising turns of the armature current.

Now
ijr

is a large angle, and thus, making it equal to ninety

degrees, we get

as an approximate equation to the wattless characteristic of the

alternator on an inductive load.



l] WATTLESS CHARACTERISTICS 57

Let OP (Fig. 29) be the open circuit characteristic, and let

O'P' be the characteristic on a wattless inductive load when the

current is maintained equal to A. If 00' equal ?z(7
, then, when

C has the value C
,
Fis zero. We must have, therefore,

LwA =f(nC*-oLNiA.).

Since the equation to the curve OP is y =/(#), we see that, if we

measure O'B equal to aN^A and erect the ordinate BK to the

curve OP, BK must be equal to LwA, the armature leakage
electromotive force.

It is to be noted that the position of the point 0' can always
be determined from the short circuit characteristic curve. The

magnetising turns of the field magnet windings, when the current

in the short circuited armature is A, are represented by 00'.

Thus the short circuit characteristic always enables us to fix the

points where the wattless characteristic cuts OX. We shall now

give a graphical construction for drawing these characteristics

when the open circuit and short circuit characteristics are known.

Let us suppose that we have to construct the wattless charac-

teristic when the current in the armature is A . Let 00' (Fig. 29)

be equal to the abscissa corresponding to the ordinate A on the

short circuit characteristic. Calculate a by means of Guilbert's

formula (p. 47) and make O'B equal to aN^A. Erect the ordinate

BK and join O'K. We have seen that BK equals LwA. Now
draw any ordinate QM perpendicular to OX, make QC equal to

BK and draw CPf

parallel and equal to BO'. Then P will be a

point on the wattless characteristic which passes through 0'.

To prove this, note that

P'N=QM-QC
=f(ON-MN)-L>A
=f(nC-aN1A)-L(oA )

and therefore, by the equation given above, P'N equals V, where

V is the ordinate of the wattless characteristic which has ON
as abscissa.

If we are only given the open circuit characteristic and a

point P' on a wattless characteristic, we can construct this

characteristic as follows. Make NM equal to aN^A and draw

the ordinate MQ to the curve OP. Join QP'. Then, if we take
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any point R on the curve OP and draw RR' equal and parallel to

QP', R' will be a point on the wattless characteristic through P'.

The wattless characteristic, therefore, can be obtained from the

open circuit characteristic by simply displacing the latter curve

parallel to itself through a distance equal to QP'.

When we use a condenser or an over-excited synchronous

motor, the equation to the wattless characteristic for a given
current A is got by writing 90 for ^'. Thus we get

V-La>A =-sin cos2

Assuming that ty is approximately equal to 90, we find that, in

this case,

The wattless condenser characteristic for a given current A is

therefore simply the open circuit characteristic displaced through
a given distance parallel to itself. It is above the curve OP in

Fig. 29. When the machine is running on a condenser load, and

the magnetising current is made zero, the terminal potential

difference is appreciable, as the magnetomotive force of the arma-

ture current magnetises the field. The wattless characteristics

found experimentally are very similar to the curves obtained by
the above constructions. It has to be remembered, however, that

we have made several assumptions in proving them which, in

some cases, are not justified. We have assumed, for example, that

the vectors in Fig. 27 are in one plane, and we have also assumed

that both ty and ty' are equal to 90.

When RA, LcoA and F(J3NlA)coB
<^ are small compared

with V, we see from Fig. 27 that
T/T

is approxi-

Son
e

t

r

o

al equa "
mately equal to ^'- Hence, by projecting OABGD

load charac- on QJ) we get
teristics.

Vf(nC aN^A sin
A/T)

LwA sin ^r RA cos

For a given value of ^ this is the general equation to the 1<

characteristic. We have already seen how to find LwA (BK in

Fig. 29) from the short circuit and open circuit characteristics.

Calculating a by Guilbert's formula, we can findf(nC a^Asmty)
from the open circuit characteristic, and thus we can predetermine
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V for any current A and power factor cos
yfr

f

t provided that the

current follows the harmonic law and that ty' is approximately

equal to
-v/r.

The following particular cases may be noted.

*
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We have seen (p. 58) that, when RA, LCDA and F(^N^A) cos ty

are small compared with F, we may write

Vf(nCaN'1A sin ty) LeoA sin
-\Jr

RA cos ^r

=f(nC - aN^A sin
i/r)

- V#2 + Z2
a>

2 A cos fy - 7),

where tan 7 = Lco/R.

In this equation cos ^r is the power factor of the load. If we make
the assumption that the current follows the harmonic law, a can

be calculated by the formula given on p. 47, and thus

can be found from the open circuit characteristic. The value of

this quantity fixes a superior limit to the value of V. If we

subtract from it V^2 + L2
co

2
. A, we get an inferior limit to F

Now from Fig. 27 we see that, when the terminals of the

machine are short circuited, we get

RA =f(nC a.NlA sin fa) . cos fa -f F^N^A) . sin fa cos fa,

and

LeoA =f(nC - aNiA sin ^ ) . sin ^ - Ftf^A). cos2^ ,

where C is the exciting current corresponding to the current A on

short circuit, and fa is the phase difference between the armature

current and the E.M.F. generated by the direct flux, when the

short circuit current is A. We thus obtain

(R
2 + 2

*>
2

) A* = {/(nC7
- aN.A sin ^ )}

2 + {F (^N.A)}^ cos2 ^ ,

and

o
- aN,A sin^ ) -Ftf^A). sin^ . co

tan n. -tin
f(nC9

- aN.A sin^ ) + F(/3N1A) . sin^
When, therefore, F(0N-iA) is appreciable, ^r is greater than 7.

If we make the assumption that the transverse magnetisation
can be neglected, we have 7 = ^ ,

and thus

V=f(nG-aNlA sin ^) -f(nC - aN.A sin ^ ) . cos (^ - ^ ).

If W be the power, in watts, expended in heating the alternator

when the current in the short circuited armature is A and the

exciting current is consequently C
,
we have

f(nC - a^A sin ^r ) A cos fa = W .

Since nC aN^A siufa is a small magnetising force, we can write
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k^iCo-oiNiA sin ^ ) for f(nC - aN^A sin ^r ), where & is a

constant which is found from the open circuit characteristic.

Thus we have
W

(nC a. AriA sin ^r ) cos ^ = r~ .

This equation for ^ can be solved graphically. If we draw the

sine and secant curves given by the equations

y nC oiN-^A sin x,

W
and sec ^>

the abscissa of their point of intersection gives the value of
T/r

.

ie potential difference V can then be determined by the equation

K.

Since the open circuit voltage V is given by

F,=/(nC),

we see that, when the power factor of the load is cos
ifr,

the drop

in volts for a given current, the effective value of which is A, is

given by

F - F=/(C) -f(nC - JM sin t) +^ *<*-*)
.A COS

0/r

In proving this formula we have made the assumptions that RA
and LroA are small compared with V, that the current follows

the harmonic law, and that the transverse magnetisation can

be neglected.

In practice, W can be measured accurately by a transmission

dynamometer. We measure the power W taken to turn the

armature at the given speed when the field is not excited and the

terminals are on open circuit. We then measure the power W
taken to turn the armature at the same speed when the short

circuit current is A. The difference between W and W will be

very approximately equal to W .

It will have been seen that the cross magnetising and de-

magnetising effects of the armature currents con-
Theoretical .

&
charac- siderably complicate the problem of predetermining

the pressure drop at the terminals for a given load.
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In some machines, however, these effects are not large, and so it is

instructive to find the relations between the various voltages and

the current, on the assumption that these effects are negligible.
The shapes of the curves obtained, on this assumption, are similar

to those obtained by experiment on most forms of alternator.

Suppose that e is the instantaneous value of the total E.M.F.

generated in the armature, v the external potential difference,

R the resistance of the armature, and el the armature leakage
E.M.F. Then, if i be the instantaneous value of the current, we
have by Ohm's law,

and therefore e = Hi -f el + v.

Hence squaring and taking mean values we get

E2 = R*A* + Ef + F2 + 2RE.A cos fa

+ 2RVA cos T

where the capital letters denote effective values, and fa, ijr
and

are the phase differences between El and A, Fand A and between

El and V respectively. E!A cos fa is the power expended in

hysteresis and eddy current loss in the alternator, and cos ty
r

is

the power factor of the external circuit. If we neglect the losses

in the armature, we get fa equal to ninety degrees, and we can

write LwA for E1 where i is a constant. If we make the further

assumption that Elt A and V are in one plane, then we can write

90
i/r'

for fa. On substituting these values the equation
reduces to

E2 = a*A* + 2hAV+ F2
..................... (i),

where a2 = R2 + Z2
a>

2
,

and h = R cos -// + Leo sin ty'

= a cos (^r' 7),

where tan 7 = ^ .H

Now, for given values of
>//,

o> and E, the equation (i) represents
an ellipse. If we take A as abscissa and F as ordinate, we may
write (i) in the form

a?a? + Zhxy + f = E\



I]
THEORETICAL CHARACTERISTICS 63

Hence the angles Ol
and 2 that the axes of this ellipse make with

OX are determined from the equation

97,

tan 20 =
a2

If, therefore, the impedance is unity, is 45 degrees. In order to

simplify the equation as much as possible, let us suppose that R is

zero and La> is 1. Then a is 1 and h is sin ty'.
Hence the equation

becomes
a? + sin A// + f = E2

.

O

Fig. 30.

Cwrent

Theoretical characteristic curves of armature electromotive force

and current.

BC is the curve on an inductive load.

BDC is the curve on a non-inductive load.

EEC is the curve on a condenser load.
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Solving this equation for y (the voltage) we get

y = x sin i// + VE2 x* cos2

^r'.

As both x and y must be positive, we need only consider the part

of the ellipse lying in the first quadrant. When
-v//

is negative,

that is, on a condenser load, y attains a maximum value E/cos *fy'

when x is E tan ^'. If ty' be a large angle, we see that the

potential difference between the terminals may be very high on a

condenser load.

On a very inductive load ^r
7

is ninety degrees, and the equation

becomes

This is the equation of the line EG shown in Fig. 30. On a con-

denser load the equation is

x - y = E,

which represents a line through B at right angles to EG. On a

non-inductive load we should get the circle BDC, and on a load

which gave a leading current, the ellipse EEC. In many cases

the curves obtained by experiment are very like those shown in

the figure.

When the reluctance of the field magnet circuit alters periodi-

cally, as, for example, when there are polar projections

of or slots ^ tne armature, an alternating E.M.F. is set

current
iting UP *n *he field magnet coils due to the periodic

variations in the tiux. If the alternator is one which

has a polar projection on the armature corresponding to every
field magnet pole, the frequency of the alternating component of

the current in the field magnet windings will be twice as rapid as

the frequency of the alternating current in the armature. This

alternating current component is rarely large owing to the high
inductance of the field magnet windings, and does not vary much
when a non-inductive resistance is put in series with these windings.

The impedance of the field magnet coils is practically proportional

to the speed of the armature, and so also is the E.M.F. set up in

them. We should therefore expect that the amplitude of the

alternating current component in the exciting circuit would be

independent of the speed of the armature, provided that the
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direct current component in the windings of the field magnets were

maintained constant. This is found to be the case in practice.

In machines which have a large armature reaction, the periodic

magnetising forces due to the currents in the armature windings

may give rise to large alternating current components in the

exciting circuit of the field. The period of the variation of the

flux in the field magnets is twice as great as the period of the

alternating current supplied to the external circuit of the machine.

The variation of the flux in the field magnets gives rise to losses

due to hysteresis, eddy currents and the heating of the field magnet
coils by the alternating current component flowing in them. This

alternating current component produces the same heating effect

on the coils as it would produce if the direct current component
were zero. For example, if the effective value of the direct

current component is 40 amperes and the effective value of the

alternating current component is 9 amperes, the heating loss will

be R (9
2 + 402

) where R is the resistance of the circuit, and the

reading on an ammeter in the circuit, therefore, will be 41 amperes

(see Vol. I, p. 67).
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CHAPTEE II.

Three phase machines. Effect of star or mesh connection of the armature

on the output of the machine. Current in a mesh connected armature

on no load. Connection of the armature of a three phase machine so

as to give single phase currents. Diagram of a three phase winding.

Armature reactions. Illustrations. Examples. The electromotive force

on open circuit. The shapes of the star and mesh voltage waves.

The P.D. wave on closed circuit. Inductive characteristics. Tests of a

three phase machine. Characteristic curves. Oscillograph records.

Two phase machines. Armature current on no load. Tests of a two

phase machine. Characteristic curves. Oscillograph records. Tests of

a large three phase generator. Load losses. The efficiency of the exciter.

References.

WE saw in Volume I that the armature of a three phase
machine has three windings, which may be connected

machin
P
es
ase

either in star or in mesh fashion. In a two phase
machine we can have two windings which are quite

separate from one another, or we can have four windings which

may be connected in star or in mesh. We shall only consider

three phase and two phase alternators, as these are the only

practical forms of polyphase machines. In a three phase machine

there are, when the armature is the stator, three terminals, and,

when the armature is the rotor, three slip rings from which the

alternating current is collected
; just as in a single phase machine

we have two terminals or two slip rings. In a two phase machine

there are generally only three terminals or slip rings, when the

armature has two separate windings, and a three wire system of

distribution is used (Vol. I, Chap, xn) ;
in all other cases there

must be four terminals or slip rings. We shall first consider three

phase machines. In Figs. 31 and 32 are shown the simplest forms

of mesh and star windings for three phase armatures. The three

circles in the centre of Fig. 31 represent the slip rings. The slip
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rings are mounted on the shaft and insulated from it. The current

is collected from them by means of copper or carbon brushes. The

arrow heads show the directions of the currents in the various

conductors. The conductors are drawn radially so as to make the

diagram clearer, but they are really parallel to the shaft, and are

placed in slots in the circumference of the armature. The armature

Fig. 31. Three phase armature with bar winding mesh connected.

is built up of thin circular iron sheets placed at right angles to its

axis. These sheets are insulated from one another, and are pressed

together between end plates, the whole being firmly keyed to the

shaft. In some machines the armature rotates, but more commonly
the field magnets rotate. In the latter case no slip rings are

required for the alternating current, but slip rings are required to

bring the direct current to the exciting coils of the rotating field

magnets.

52



68 ALTERNATING CURRENT THEORY [CH.

In Fig. 32 the windings are indicated for a machine which has

a star connected armature. It will be seen that the winding is

practically identical with that shown in Fig. 31.

Fig. 32. Three phase armature with bar winding star connected.

Let us first consider a machine with a mesh connected armature.

When the load is balanced, the currents in the ex-

ternal mains will each be equal to AtJS (Fig. 33),

where A is the effective current in a phase winding
of the armature. This follows because we can regard

the current in the main Bb, for example, as the

resultant of the currents flowing in AB and CB respectively.

Now we know (see Vol. I, p. 228) that the currents in CB and BA
differ in phase by 120 degrees, and therefore the currents in the

directions CB and AB differ in phase by 60 degrees. It follows

that the current in the main is the resultant of two currents each

Effect of star

or mesh con-
nection of an
armature on
the output of
a machine.
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having an effective value A, the phase difference between them

being 60 degrees. Hence the current in each main is A*JS.

If V be the effective voltage between any two of the slip rings

of this machine, the effective voltage between the mains will also

be F We can show in a similar manner that the currents in

each arm of the balanced load abc (Fig. 33) are each equal to A.

Fig. 33.

B b

Mesh connected armature ABC. When the load is balanced the current

in each main is y^/3 times the current in an armature winding.

If the mains be very short so that the '

voltage drop
'

along them

is negligible, the voltage across the arms of the load will be V.

The power given to the load therefore is 3VA cos ^, where cos ^r

is the power factor of each arm of the load. When the load is

non-inductive the power given to it is 3VA.

Fig. 34. Star connected armature ABC. When the load is balanced the voltage

between any two of the terminals A, B, and C, equals ^3 times the voltage between

A and S, where S is the centre of the star.

A diagram of the armature when it is star connected is shown

in Fig. 34. In this case the current in the main is the same as

the current in a winding, but the effective voltage between the

slip rings on a balanced load will now be F\/3 since V is the

potential difference between A and S (Fig. 34). The output of

the machine is 3 x F^/3 x (A cosi|r)/V3, that is, 3F4 cos-v/r. It

is therefore the same as when the armature is mesh connected.

The maximum output of a machine is limited either by the
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rise of temperature in the armature or by the maximum current

the armature windings can carry. Now, whether the armature be

connected in star or in mesh, the output is SVAcosty, and is

limited by the maximum permissible value of 3RA 2 in each case.

Thus, if V and cos-v^ be constant, the maximum output in the

two cases is the same. We must note, however, that the voltage

between the mains with the star connected armature is V3 times

the voltage with the mesh connected armature.

We shall see in the next paragraph that local currents, which

will lower the efficiency of the machine, may be generated in a

mesh connected armature. In this respect only is the mesh con-

nection inferior to the star connection. For equal power and

voltage we require \/3 times the number of windings when the

armature is mesh connected compared with what is necessary

when it is star connected. In the latter case, however, the cross

section of the wire needs to be \/3 times as great, and thus the

labour involved in winding the armature is much the same in

the two cases.

It is to be noted that, with the mesh winding, if we start from

current in a
any S^P S * we et metallic connection with the

mesh con- s\{p rmg 2 through the winding (1, 2), then with

ture on no 3 through the winding (2, 3), and finally back again

to the first slip ring through the winding (3, 1). The

three windings thus form a closed metallic circuit, and, if the three

E.M.F.S are not balanced at every instant, we get a local current

circulating in the windings.

If the slots are arranged symmetrically and if the E.M.F. in one

winding be /(), then, if the resultant E.M.F. round the circuit of

the armature coils always vanishes, we must have

Solving this equation (see Vol. I, p. 231) we find

.................. (i),

where X and Y are functions of t that do not alter when

t + T/3, t + T/2 or t + 2T/3
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Fig. 35. 'a' is the mesh E.M.F. of a General Electric 'A.T.' machine at no load.

'6' is the resultant E.M.F. wave round the circuit formed by the mesh windings.
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is written for t. An example of such a function would be

sin 6 -~- . If f(t) be a sine curve or any other of the curves

given by the equation (i), there will be no currents in the armature

at no load.

If the E.M.F. wave/() generated do not satisfy the equation (i),

the resultant E.M.F.
<f> (t) will be given by

and hence
/ T\ f T

* ' + ?)-/(i+f

Therefore

Hence the frequency of the circulating current is at least three

times as rapid as the frequency of the alternating current given
out by the machine. Since the inductance of the armature is

always high, the loss due to this cause is generally only appre-
ciable in machines which produce low frequency currents. In

Fig. 35 'a' is the mesh voltage of a General Electric 'A.T.'

machine at no load.
'

b
'

is a curve obtained graphically by

finding the resultant of three curves similar to
' a' and having

time lags of 0, T/3 and 2T/3 respectively. A very small change
in the shape of ' a

'

may produce a considerable change in the

shape and magnitude of
'

b.'

We shall now consider how to connect the coils of a star

Connection of
wound armature so as to get single phase currents.

of
e

a
a
thTe

a
e

Ure If the wmdings %> Y and z (Fi - 36) be separated
phase machine from the common junction and connected as in

single phase Fig. 36, the phases and the magnitudes of the com-

ponent effective voltages x, y and z may be represented

by lines as in the figure. When x, y and z are each equal to V, the
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resultant voltage will be 2F, provided that the sum of the in-

stantaneous values of the E.M.F.s generated in the armature coils

is zero when they are connected in mesh. For let the instantaneous

values of the E.M.F.S be represented by f(t), f(t + T/S) and

f(t + 2T/3), then the resultant E.M.F. when they are connected

as in the figure is

(Tt +
3

and this is equal to

if

LUS the effective value of the resultant voltage is 2 F.

A B

T t

Fig. 36. Three phase armature connected so as to give single phase currents.

Eesultant voltage between A and B is 2V, where V is the effective voltage generated

in each winding.

Now, as we have, stated above, the maximum output of an

alternator is generally governed either by the maximum per-

missible heating of the armature or by the maximum current the
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armature windings can carry. In the first case, let us suppose
that the armature, when it has attained its highest permissible

temperature, can radiate an amount of heat which is equivalent
to H joules per second. Let A 3 be the largest effective current

which it is safe to take from each winding. Then, neglecting the

iron losses, we have

where R is the resistance of one winding. If V be the potential

difference between the terminals, the output is

3 VA, cos
i|r
= V3 V

f^/ ^ cos ^.

When it works as a single phase machine (Fig. 36), the output is

os'^J
and

and therefore the output equals

9 I TT 9 / JT PT

~/3
FY ]R

COS ^ = 3
* ^3 VV R COS ^ = 1 15

When the armature is connected in the manner shown in Fig. 34,

the output is, therefore, only two-thirds the output of the machine

when giving three phase currents.

Sometimes single phase currents are obtained by merely

loading one phase of the three phase generator. If we assume

that the maximum current the armature winding can carry is A,

then the output is \/3 VA cos
i/r,

as compared with 2VA cos
i|r

when the machine is connected as in Fig. 34.

If, however, we assume that the output is governed by the

heating of the armature, we have

and the output = \/3 VA cos

In= 1-22V A/ IT cos ^ nearly.

In this case the current in each of the active windings is about

twenty per cent, greater than when connected as in Fig. 36, and

the output is about six per cent, greater.
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A method of connecting a three phase mesh connected armature

so as to get single phase currents is shown in Fig. 37. It will be

seen from the diagram that the problem is practically identical

with the preceding one. Thus, if we take the heating of the

armature as the governing factor, the output as a single phase

machine is only two-thirds of the output as a polyphase machine.

Y

Fig. 37. Armature with windings in 'mesh,' connected so as to give single

phase currents. Eesultant voltage between A and B is 2V, where V is the effective

voltage generated in each winding.

A conventional method of representing the windings in a three

phase armature is shown in Fief. 38. It will be seen
Diagram of a r
three phase that there are three slots on the armature per pole,

or in other words one slot per pole and per phase.

Only the end connections are shown, the armature conductors being

perpendicular to the plane of the paper.

Fig. 38. Three phase alternator with rotating field. Currents in phase with

the armature electromotive force.
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If the current be in phase with the armature electromotive

force, then, with the field magnets in the position
Armature shown in the diagram, the currents in the wires
reactions.

marked 2 will be zero and the currents in the wires

marked 1 and 3 respectively will be equal in magnitude but

opposite in sign. The effect of these currents is to produce both

a direct and a transverse magnetisation of the field.

Tig. 39. Three phase alternator with rotating field. The directions of the

currents an eighth of a period later than in Fig. 38.

The position of the field magnets, an eighth of a period later,

is shown in Fig. 39. The arrow heads indicate the directions of

the currents when they are in phase with the armature electro-

motive forces. It will be seen that transverse and direct magnetising
effects on the field are still being produced. In Chapter I, p. 38,

formulae were found for the mean demagnetising effect of the com-

ponent of the current which is ninety degrees different in phase
from the armature electromotive force, and formulae were also

found for the mean ampere-turns ^N-^A cosijr, due to the com-

ponent of the current in phase with the armature electromotive

force tending to magnetise the field transversely. When we are

considering a three phase armature, we can add the three mean

magnetising forces together, and so, if the load be balanced, the

formulae (p. 47) become

xr A
O.N!A sin

and &N\A cos

o , r A - .= 3 T JViA sin ty sin ^ sin 77-
7T

2 b 2a 2a

- nan a AT A irb' - ^h= 1*720 T^\A sin -dr sin-5- sin
,

b 2a 2a

= 1720 N-^A cos ^ sin -
1 1 - cos -

,
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where 2^ is the number of armature conductors per pole and

per phase, or in other words N-i is the number of armature turns

per pole and per phase, and the other symbols are defined as on

pp. 34 and 38.

To illustrate the method of applying these formulae, let us

first consider the winding illustrated in Fig. 38. In

this case the breadth of a coil &' equals the pitch of the

poles a, and hence the formulae become

otN-iA sin -vlr = 1*720 T sn
. Trbm H~>

and

Fig. 40. Three phase alternator with rotating field having two slots

per pole and per phase in the armature.

Let us next consider the winding illustrated in Fig. 40. In

this case we have two slots per pole and per phase, and the breadth

of the inner winding of a coil is oa/Q and of the outer 7a/6. Now>

for the inner coil, sin -= equals sin
,
that is, sin 75, and for the

outer coil, sin equals sin- which is also equal to sin 75.
Z6t I

Hence we get

and

sin

cos

a . . .

sin ^r sin sin 75

= 1-661

= 1-661

sn

cos

sn
,

(l
- cos
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If we have three slots per pole and per phase, the breadth

of the middle winding of a phase is a and the breadths of the

inner and outer windings 7a/9 and lla/9 respectively. We
have, therefore,

AT A o
GiN^A sin \lr = 3

a , r . . . irb~ r Jv 3
J. sin ilr sin

7T
2 6 2a

ITT 9?r UTTm- + sm- + sm

3

= 1-653 JM. sin ^ sin
,

6 2a

- cos ^ = 1-653 N,A cos l - cos .and

In the following table the values of a and /3, in this case, are

calculated for various values of b/a.

b

a
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In a 760 kilovolt ampere Heyland alternator the armature has

two tunnels per pole and per phase with three conductors per

tunnel. In this case, Nt is 3, and a equals 6. When A is 200

amperes we have

aNiA sin -^
= 996'6 sin ^,

and P^A cos ^ = 996'6 cos ^.

A 2600 kilovolt ampere Siemens and Halske alternator has

three slots per pole and per phase, with one conductor in each

slot, and a is equal to b. In this case Nj. is T5, and when A is

520 amperes
a^A sin

and N!A cos

= 1289 sin

= 1 289 cos

Fig. 41. Number of armature coils 6. Number of poles 4. The coils round

I', 2' and 3' (not shown in the diagram) may be connected either in parallel or

series with the coils round 1, 2 and 3.

It is to be noted that in an alternator the number of armature

coils is not necessarily a multiple of the number of poles. For

instance, in the fcur pole machine illustrated in Fig. 41 we have
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six armature coils and four poles. In this case, since the number
of turns per armature coil is three, NI would be 1*5.

Fig. 42. Part of the armature of a three phase machine having sixteen

poles and twenty-four armature coils.

In Fig. 42 is shown part of the armature of a three phase
machine which has sixteen poles and twenty-four armature coils.

Fig. 43. Three phase alternator with ten poles and twelve armature coils.
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If there are n turns on each armature coil, then, N^ will equal

8w/16, that is, n/2.

The formulae can be applied even when the armature winding
is complicated. The effect of the various windings of the armature

shown in Fig. 43 in producing the potential differences between

the slip rings will be understood from the diagram in Fig. 44,

3' '2

Fig. 44. Diagram of the E.M.F.S in the three phase alternator shown in Fig. 43.

where the manner in which the potential differences combine

vectorially is indicated. Since there are ten poles and twelve

armature coils the number of armature coils per pole and per

phase will be 4/10, and thus, if there are n-^ turns per armature

coil, N! will equal 2w1/5.

The electromotive force, on open circuit, at the terminals of an

armature coil of a three phase machine, can be cal-

motive
6

force culated in the same way as the E.M.F. for a single

circuit phase machine. With our usual notation, if there are

N' bars joined in series in one winding, then, the

voltage V at the terminals of the coil is given by (p. 16)

V=2fN' S^xlO-8
.

6m

In order to find V, therefore, we must know the shape of the

wave of electromotive force, and this can only be predetermined
when we know how the flux in the air-gap is distributed.

If we make the assumption that the problem can be discussed

with sufficient accuracy, as if it were in two dimensions, then

the distribution of the flux in the air-gap can be determined

R. n. 6
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approximately in the following manner. Cut out a sheet of

tinfoil (Fig. 45) so that it represents a section of the pole, armature

and air-gap by a plane perpendicular to the axis of the rotor.

We shall suppose that the armature is in such a position that the

field is symmetrical on both sides of the pole. Let AB represent

the surface of the armature, and let CD and EF each represent
half the distance between adjacent poles. Now paste the tinfoil

Q

Fig. 45. Method of finding the reluctance of the air-gap of an alternator.

on a sheet of glass, and place strips of copper along CD and EF.

If we connect these strips with the terminals of an accumulator,

the current will flow along the tinfoil from one strip to the other.

The equipotential lines on the tinfoil can be plotted out easily by
KirchhofFs method. We connect wires with the terminals of a
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sensitive galvanometer. The extremity of one of these wires

being placed on P, for instance, we move about the extremity of

the other on the tinfoil until we find a point where there is no

deflection of the galvanometer. This point will obviously lie on

the equipotential line through P. Similarly we can easily find

other points on this equipotential line. In particular, we plot out

the equipotential lines AL and BM that pass through the points

A and B on the armature. The stream lines cut the equipotential

lines at right angles, and the edges of the tinfoil will obviously

be stream lines. Now, it is easy to see from the mathematical

equations that the equipotential lines in the electrical problem are-

the lines of force in the corresponding magnetic problem, in twa

dimensions, and the lines of equal magnetic potential in the latter

problem correspond to the stream lines in the former.

When the current is maintained constant, the number of equi-

potential lines which pass between any two points in the tinfoil is

proportional to the difference of potential between these two

points. The P.D. between any two points can be determined

readily by the potentiometer method indicated in the diagram.
RS is a long wire stretched between the poles of the battery and

points p, q, I and ra are found on it which are at the same potential

as the points P, Q, L and M. We see that the ratio of the

number of lines of force, in the magnetic problem, between L and

M to the number of lines of force between P and Q equals the

ratio of the P.D. between L and M to the P.D. between P and Q,

and thus is equal to the ratio of the length of pq to the length
of Im. We can find in this manner the ratio of the flux between

any two points on the polar surface to the flux between any
other two points, and thus we can map out the flux density.

We can also map out in the same way the flux density at all

points on the air-gap, and so we can construct the flux curve. It

has to be remembered, however, that we are making the assump-
tion that the permeability of the iron in the armature and pole-

piece is infinite. We also neglect the effect of hysteresis in

distorting the field when the rotor is in motion.

To find the reluctance between the armature and the pole-piece

we proceed as follows. If Rb denote the resistance to electric flow

in the tinfoil between the equipotential lines AL and BM and R
(;

62
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denote the resistance to electric flow between LM and AB, when

AL and BM are stream lines, then, if p be the resistivity of the

tinfoil and its thickness be unity, we have

Now the equipotential curves passing through P and Q are

practically straight lines passing through these points. Thus if

the length of PQ be a and the length of CD be c, we have

Eb p (a/c)
'

where C is the current in the tinfoil and Vi, V2) Fx and F2 are the

potentials at P, Q, L and M respectively. We have, therefore,

Kb = Pr
c v1 v2

-r- C V-i V<> C f)Q
Hence Rq = p- ^ T^= P

- pr a Fj F2

r a Im

Now the general formulae for resistance and reluctance are

E = 2 - and # = 2-
S yLt5

'

respectively. Thus, when we know the resistance to the flow of

electricity, we can find the reluctance in air by writing p equal to

unity. We find therefore that the reluctance, per unit length

parallel to the axis, of the pole is c.pq/a.lm, and thus

where (Rg is the reluctance of the path of the flux, leaving the

pole Ny
which is linked with one of the adjacent poles, and b is

the breadth of the pole parallel to the axis of rotation.

When we know approximately the density and the distribution

of the flux in the air-gap, both of which can be found by the

above experimental method, the shape of the wave of the open
circuit E.M.F. when the armature has a simple bar winding can be

predetermined. We can then find V from this wave by the con-

struction given in Vol. I, p. 69. When the distribution of the
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flux varies appreciably with the relative positions of the armature

and the pole, then (R
ff

is not a constant, but the problem, although
much more difficult, can still be solved by the experimental method

described above.

When the armature of the machine is star wound, the shape of

the wave of P.D. between a terminal and the centre

th e

e

sta*and of a star winding is, in general, different from the

wavesT
ltage shaPe of the wave between two terminals. If el} ez

and es be the instantaneous values of the P.D.s

between the terminals 1, 2 and 3 and the centre of the winding,
and if ^x-2, v2 .3 and vs^ be the P.D.S between the terminals, we have

On open circuit el) e^ and e3 can be calculated when the distribution

of the flux in the air-gap is known. Let us suppose that the

machine is symmetrical, so that we may write

6l =/(*), e, =f(t + T/3) and es =f(t + 2T/3).

Then, we have

fi-2 =f(t) -f(t

We can, therefore, easily find v^ graphically by adding together

the ordinates of two periodic curves each equal to the curve f(t)

representing the star voltage and one having a time lag relative

to the other of one-sixth of a period.

Let us suppose that

el + e2 + es = 0,

and that V is the effective value of each of the star voltages. In

this case their vectors will be inclined to one another at angles of

120 degrees, and so the effective value of v^ will be y\/3. Let

us also suppose that/() represents a symmetrical alternating wave

(see Vol. I, p. 153), so that we have

/(0=/(f-<) =-/(-*)

Then since



86 ALTERNATING CURRENT THEORY [CH.

we see that v^2 vanishes when t is T/12. Thus if A' be the area

of the wave v^, we have

12

where A is the area of the positive half of the wave f(t\
T

i

and A,=\ f(t)dt.
J o

If we divide the base of the part of the curve f(t), between and

T/2, into six equal parts, and erect ordinates at the five points of

division, A l will be the area of either the first or the last of the

segments into which the area has been divided.

Let ks and km be the form factors of the star and the mesh

wave respectively. Then we have

, , TV3
and km = 2A - 4^

'

2

V3 A
.*..

2
' A-

If A l be zero, then, whatever the shape of the rest of the wave,

&*=Y.&. o-866*f .

This may also be seen at once since, in this case, the area of

the mesh wave is double that of the star wave whilst the R.M.S.

value of its height is \/3 times that of the star wave.

If f(t) represent a triangular wave,

km = 0-974 &,.

For a sine wave

km == kS)

and for a rectangular wave

km =l'3ks .

If A! be large, then km can be much greater than ks .
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The upper curve in Fig. 46 is the mesh voltage wave of a three

phase generator (Oerlikon, type 6065) and the lower curve is the

star voltage wave of the same machine. The wave is not sym-

50

40
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10

\
180
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10

90 180

Fig. 46. The upper curve is the mesh voltage wave of an Oerlikon three phase

generator (type 6065) and the lower curve is the star voltage wave of the same

machine. The upper curve can be obtained by adding together two curves similar

to the lower one and having' a time lag of 60 degrees.

metrical and so the above formula for the ratio of km to ks does

not apply. It is however approximately symmetrical, and as A^
is small compared with A, we see that km will be approximately
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equal to \/3&g/2. We have seen above that the upper curve,

which is sometimes called the compounded wave of E.M.F., can

easily be constructed from the lower one.

The effects of the transverse magnetisation of the field by the

armature currents on the shape of the potential

difference wave across the terminals of the machine

are conspicuous in the P.D. wave shown in Fig. 47.

This is the shape of the wave of the mesh potential

difference of an Oerlikon three phase generator when working on

ciosedcircuit

\

7 \

Fig. 47. The shape of the wave of the mesh potential difference across the

terminals of a three phase generator (Oerlikon, type 6065) on a non-inductive load.

Note the distortion due to the cross magnetisation of the field.

a non-inductive load. In this machine the cross magnetising
effect of the current in the phase winding in which the maximum
electromotive force is being developed is large. In Fig. 48 the

P.D. wave of the same machine when working on an inductive load

is shown. It will be seen that the wave is nearer to a sine wave

than when the machine is working on a non-inductive load.
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V

\

Fig. 48. The shape of the wave of the star potential difference of a three phase

generator (Oerlikon, type 6065) on an inductive load.

In Fig. 49 the curve A is the open circuit characteristic of a

400 kilovolt ampere generator with a mesh connected
~

armature. It is evident from the figure that the iron

in the field magnet windings is saturated when
the exciting current is large. In small machines, owing to the

large air-gap, this characteristic is often very nearly a straight

line. The curve B gives the characteristic when the machine is

driving an unloaded synchronous motor, the field of the motor

being only feebly excited. In this case, the current is nearly

wattless, and is lagging by a large angle behind the applied

potential difference. The current is kept approximately constant

and the field excitation of the alternator is varied. The curve B
obtained is similar to the corresponding curve for a single phase

machine, and it can be utilised in a similar manner to find the

leakage electromotive force of the armature. The curve C is

obtained by over exciting the field of the synchronous motor, so

that it acts like a condenser, and we have a wattless leading
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current. It will be noticed that in this case we can even reverse

the direction of the current in the field magnet windings of the

alternator, without the motor falling out of step as the field of the

alternator is excited by the armature currents. These curves are

Volts

6000

5000

4000

20 40 60 80 100 120

Exciting Current in Amperes.

Fig. 49. A. Open circuit characteristic of a 400 kilovolt ampere A generator.

B. Characteristic on an inductive load.

C. Characteristic on a condenser load.

useful, as by their aid we can determine approximately what th<

potential drop at the terminals of the machine will be with

given power factor (see p. 58), and as only a small amount

power is required to drive a machine on a wattless load, th(

makers are able to test it economically.

The characteristic curves of three phase machines are simik

to those of single phase machines provided that the three ph?

are equally loaded. A difference arises, however, when the phj

are unequally loaded, and it will be interesting to consider th(
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curves obtained in this case. The following diagrams and data for

a small three phase machine were obtained by Andr^ Blondel and

will well repay study.

The armature of the three phase machine on which the ex-

periments were carried out is star connected, and

three phase the full load current in the windings is 9 amperes,

the pressure between the slip rings being 110 volts.

The output of the machine on a balanced non-inductive load is

therefore \/3 x 9 x 110 watts, that is T7 kilowatts. The following

are the principal mechanical data.

Number of field magnet poles ... 4.

Area of polar face 100 square centimetres.

Diameter of armature 310 mms.

Number of slots 54.

Length of slots 110 mms.

Depth of slots 20 mms.

Greatest breadth of teeth 11 mms.

Number of conductors per slot ... 6.

Air-gap 3 mms.

Revolutions per minute 1350.

Frequency 45.

The characteristic curves given in Fig. 50 were obtained in the

usual manner, and their general shapes are in agree-

ment with the curves obtained from first principles

in Chapter I. The curve 11 is the open circuit

characteristic, and, as it is a straight line, it proves that the iron

of the field magnets is not magnetised strongly. The short

circuit characteristic 22 is also a straight line showing that the

armature reaction is small, probably owing to the large air-gap.

The curve 33 gives the characteristic on a non-inductive load

symmetrically balanced, when the excitation is T08 ampere. It

is approximately an ellipse. The curve 44 is the characteristic

on a purely inductive load; it is indistinguishable from a

straight line. The curves 55 and 66 give the voltages between

the slip rings 1 and 2, and between the slip rings 2 and 3, or

3 and 1, for various values of a non-inductive load connected

Characteristic
curves.
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between 1 and 2. The regular shapes of these curves might have

led us to think that the shapes of the electromotive force and

current waves do not vary much with the character of the load.

70

\

\

\3

\mperes af excitation >

1-2

10

5

0-2

5 10 15 20 ?5 30 35 40 45 50 55 60 65 70 79

Amperes per phase.

0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0 1-1 1-2 1-3 1-4 1-5

Amperes in exciting coils offield magnets.

Fig. 50. Characteristic curves of a three phase alternator with star connected

armature.

1. Open circuit characteristic.

2. Short circuit characteristic.

3. Characteristic on a non-inductive load when the three phases are loaded

symmetrically.

4. Characteristic on an inductive load when the three phases are loaded

symmetrically.

5. Voltage of the phase (1, 2) when it alone has a non-inductive load placed

across it.

6. Voltage of the phases (2, 3) and (3, 1) in this case.

The following oscillograph records, however, prove that they vary

in an extraordinary manner.
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In Fig. 51 the shape of the electromotive force wave e at the

terminals of one phase on open circuit is given. It

differs very little from that of a sine wave and is not

rippled by the variations of the reluctance caused by

the slots in the armature. This is due to the large air-gap making
these variations in the reluctance small compared with the total

Oscillograph
records.

o

Fig. 51. e. Voltage wave across one phase of a star wound three phase machine

on open circuit.

C. Oscillograph record of exciting current.

reluctance of the gap. The effective value of e is 63 volts. The

curve C (Fig. 51) is the record of the exciting current. The

effective value of the exciting current in all the experiments was

kept constant and equal to 1*08 amperes. On open circuit it is

practically a straight line. Note that in Fig. 51 and in the

succeeding oscillograph records, the time is measured from right

to left.

In Fig. 52 the curves of the exciting current G and the load

Fig. 52. i. Current wave in a phase winding of a star connected three phase

machine when symmetrically loaded.

(7. Oscillograph record of exciting current.
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current i are given when the three phases are equally loaded.

The load in this case consisted of glow lamps, so that the shape
of the electromotive force waves is the same as that of the current

waves. The effective voltage between any of the slip rings and

the neutral point common to the three windings is 57, and the

current in each phase is 11'2 amperes. It will be noticed that C
is a pulsatory current, the frequency of the pulsations being six

times that of the alternating currents. This is due to the armature

reaction. The magnetomotive force of the current in the armature

windings which acts on the field magnets goes through all its

values in one-sixth of a period.

Fig. 53. e^. Voltage wave in a phase winding of a star connected three phase
machine when working on a symmetrical inductive load,

tj. Current wave.

C. Exciting current.

The curves el and ^ in Fig. 53 show the shape of the voll

and current waves when the machine is working on a symmetri(
inductive load. The effective value of ^ is 32 amperes, and of

241 volts.

In Fig. 54 the curve i practically gives the shape of the

current wave on short circuit. The effective value of the potenti*

difference between a slip ring and the neutral point is only one volt.

The effective value of the current is 47*5 amperes. 'The effective

value of C is 1*08 amperes, and the pulsations seem to be due

to two disturbing causes, the frequencies of which are 2/ and 6,

respectively. This may be owing to the slightly greater demag-

netising effect on the field magnets of one of the windings.
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The curves shown in Fig. 55 are very instructive, as they show

the effect of loading one phase of a three phase machine. The

load consisted of glow lamps in parallel with an electrolytic

rheostat. The electrolyte was a solution of sulphate of zinc and

the electrodes were zinc sheets. It was found experimentally

that this rheostat acted to a certain extent like a condenser, the

current wave leading the electromotive force wave. The load is

connected across the slip ring joined to phase 1 and the neutral

Fig. 54. i. Current wave when the slip rings are short circuited.

C. Exciting current.

point. The effective value of the current in phase 1 is 50 amperes,

and the effective potential difference across this phase is 44 volts.

In this case, the voltage across the second phase is 63'5, and the

voltage across the third phase is 55'6. It will be seen that the

shapes of the electromotive force waves in the three cases are

quite different, the curve e3 is more rounded than the curve e^

and the curve e$ is much more pointed. Since the resistance of

the external circuit of phase 1 is less than 1 ohm, the current

will lag by an appreciable angle ^r behind the phase of the
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armature electromotive force. If we denote the current by
/ sin (cot i/r), then, by the principle of two reactions, the trans-

verse magnetisation of the field will be proportional to / cos ^
and the demagnetising force acting on the field magnets will be

proportional to Jsini/r. The voltage of the second phase in this

case is actually greater than the voltage on open circuit. This is

due to the component / cos ^r sin cot of the current in the phase 1

Fig. 55. Three phase machine working on one phase only.

e
l

. Voltage wave of the loaded phase,

ij. Current wave of this phase.

C. Exciting current.

increasing the magnetisation of the sides of the poles nearly

opposite the windings 2. Similarly this component weakens the

flux density of the field on the other sides of the poles which are

adjacent to the windings of phase 3. In addition, the component
/ sin

t/r
cos cot of the armature current tends to demagnetise the

field magnets. The voltage across the phase 2 being greater than

on open circuit proves that the increased flux due to the transverse

magnetisation more than compensates for the demagnetising effect

of the lagging component of the current.
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The pulsations of the exciting current C (Fig. 55) in this case

are large, and, just as in single phase machines, their frequency is

twice that of the frequency of the alternating currents. Although
the effective value of the exciting current is T08 amperes, the

same as on open circuit, yet the effective potential difference

across the field magnet windings is now 95 volts, whilst on open
circuit it is only 90 volts. This is due to the alternating electro-

motive force induced in the exciting circuit by the armature

reaction.

The theory of two phase machines is practically the same as

TWO phase
^nat f three phase machines. The four armature

machines.
windings may be connected either in star or in mesh,

and either the field magnets or the armature may rotate. There

Fig. 56. Two phase armature with bar winding for a sixteen pole machine.

R. II. 7
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is, however, one case in which there is an important difference,

namely when the armature has two separate windings as in

Figs. 56 and 57. The armature of the machine represented

diagrammatically in Fig. 56 rotates, and the effective value of the

potential difference between the two outer slip rings equals that

between the two inner rings, but differs from it in phase by
90 degrees. Hence the currents supplied respectively by the

two pairs of slip rings to two symmetrical loads will differ in

phase by 90 degrees. We may replace any two slip rings not

attached to the same winding by a single slip ring without

affecting the working of the machine. Suppose, for example, the

slip rings 2 and 3 are replaced by a single slip ring x, and let

V-L.X denote the effective value of the volts between 1 and x.

Then Vvx and V4.x and F1>4 form an isosceles right-angled triangle,

we have, therefore,

F,..= F =^= 07071 Fw .

The phase difference between F1>a; and V4 .x is 90 degrees, and

between Fll4 and V^x or V4 .x is 135 degrees.

The electromotive forces can be calculated approximately by
the same formulae as for single phase machines, and so also can

the transverse and demagnetising forces of the armature currents.

Fig. 57. Developed diagram of the winding of the armature of a two phase
alternator. The winding of one phase only is shown.

In Fig. 57 a developed diagram of the winding of one phase of

a two phase machine is shown. The field magnets rotate and T^

and T2 are two of the four terminals of the machine.

In Fig. 58 a coil winding for an armature is shown, consecutive

coils of one phase being wound in reverse directions. When the

coils are wound in the same directions, the connections of adjacent
coils must be reversed.
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If the armature be wound with four coils, the electromotive

force generated in each of which differs in phase by ninety degrees

from the E.M.F. generated in the two coils adjacent to it, then

these windings may be connected in star or in mesh. If V be the

effective voltage generated, and A the current flowing in each

Fig. 58. Coil winding for the armature of a two phase generator. Coils 1 and 2

are wound in the reverse direction to coils 1' and 2'.

coil when the machine is symmetrically loaded, the maximum

output is 4<VA, whether the coils be connected in star or mesh

fashion. When the coils are star connected, the effective voltage

Fj.2 between adjacent mains is \/2 F, and the currents in the mains

are each equal to A. When the coils are mesh connected, the

effective voltage V^. z between adjacent mains is V
y
but the

currents in the mains are now \/2 A .

If we connected the coils 1 and 3 in series and also the coils

2 and 4, we should have a two phase machine with two separate

windings. In this case the voltage V^ would be 2F, and the

maximum output would be 4*VA, the same as before.

If f(t) be the electromotive force generated in one phase of a

mesh connected armature, the resultant E.M.F. round the

Armature
current on
no load.

armature windings will be

+/('*">
Now, whatever the shape of the wave, we have, if the north and

south poles of the field magnets are similar,

72
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Hence the resultant E.M.F. is always zero.

A slight lack of symmetry, however, in the four windings

might introduce a small local armature current at all loads.

The following tests on a two phase alternator were made by
Blondel. The two phase machine experimented on

Tests of a .

two phase had two separate windings, and the normal current

in each was 14 amperes at 110 volts, so that the full

load output was 3'08 kilowatts. The principal data of this

machine are given below.

Number of field magnet poles ... 4.

Area of polar face .................. 100 square centimetres.

Diameter of the armature ......... 310 millimetres.

Number of slots .................... 52.

Length of slots ........................ 110 millimetres.

Depth of slots ........................ 24 millimetres.

Greatest breadth of teeth ......... 11 millimetres.

Number of conductors per slot ... 7.

Air-gap ................................. 3 millimetres.

Revolutions per minute ............ 1350.

Frequency ........................... 45.

In Fig. 59 the characteristic curves of this machine are given,

characteristic an(^ ^ wiH ^e seen ^na* their general appearance
curves.

jg s:[milar to that of the three phase curves shown

in Fig. 50.

The curve 11 is the open circuit characteristic, and is prac-

tically a straight line, showing that the iron is far from being

saturated. The characteristic 22 on a balanced non-inductive

load is approximately an ellipse, and on a purely inductive load

it is a straight line 33. The characteristics when one phase only

is loaded are shown in A 4 , B^ and A 5 ,
B5 respectively. A 4 is

the characteristic of the loaded phase when working on a non-

inductive resistance arid A 5 its characteristic on a purely inductive

load.
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Fig. 59. Characteristic curves of a two phase alternator.

1. Open circuit characteristic.

2. Characteristic on a non-inductive load when the two circuits are equally

loaded.

3. Characteristic on an inductive load when both circuits are equally loaded.

A. Characteristic of the loaded circuit when the other circuit is open. The
volts of the open circuit are shown by B4 . The load is non-inductive.

A 5 and J5
5

. The same characteristics when the loaded phase is working on

a purely inductive load.

In Fig. 60 the shape of the electromotive force wave of this

Oscillograph
machine on open circuit is shown. The ripples in

the wave are due to the slots, and the equation to

the wave, making sine curve assumptions, would be of the form

e = E sin cot (1 +\ sin 2ncot\

where X is a small fraction and 2n is the number of armature

teeth in the polar step. The effective value of the electromotive
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force in this case is 110 volts, and the exciting current is T02

amperes, the potential difference across the field magnet terminals

being 89 volts.

Fig. 60. Shape of the electromotive force wave of a two phase machine

on open circuit.

It will be seen from the following diagrams that the ripples

c

Fig. 61. e
l

. Potential difference wave when the two circuits are equally loaded*

i
1 . Current wave in the same case.

C. Exciting current.

The load consisted of glow lamps.
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still remain in the potential difference waves when the machines

are loaded, but they disappear from the current wave when the

current becomes large (see Vol. I, p. 79).

In Fig. 61 the shape of the potential difference wave el and of

the current wave ^ are shown when the two circuits are working
on equal non-inductive loads. The effective potential difference

in each circuit is 99 volts and the effective current is 14'5

Fig. 62. ij. Shape of the current wave when both circuits of a two phase
machine are short circuited.

C. Exciting current.

amperes. The ripples in the exciting current show that there

is some armature reaction, and, although the effective value is

1'02 amperes, as before, yet the effective voltage at the terminals

of the field magnet windings is 89'5 instead of 89, the value it

has on open circuit. The frequency of the alternating component
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in the exciting current is four times the frequency of the alter-

nating current.

The shape of the current wave i (Fig. 62) when the armature

windings are short circuited is approximately a sine curve. This

is due to the large inductance and small resistance of the circuits

in this case. For this reason the high frequency components of

the electromotive force produce only very minute currents, which

are not apparent on the resultant current wave v The effective

value of ii is 39'5 amperes.
When one circuit is closed through a choking coil and the

other is open, the difference between the shapes of the potential

difference waves (Fig. 63) is very marked. The wave across the

Fig. 63. e
1

. Potential difference wave when the first circuit is working on an

inductive load, the second circuit being open.

i1 . The current wave.

e%. Potential difference wave across the unloaded circuit.

G. Exciting current.

working circuit is very flat, and its effective value is 50 volts,

whilst the wave across the unloaded circuit is peaky and has an

effective value of 76 volts. The effective value of the current

in the choking coil is 34'2 amperes, and the frequency of the

alternating component of the exciting current, as in single phase

machines, is twice that of the alternating current.

In Fig. 64 the current and potential difference waves are

shown when one winding is short circuited. In this case the
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current wave is curiously distorted, and the exciting current has

a very large alternating current component. The effective value

Fig. 64.

h-

%.
C.

Two phase machine with two separate windings, the first of which is

short circuited and the second is on open circuit.

Current in short circuited winding.

Potential difference across unloaded winding.

Exciting current.

of e2 ,
which is 110 when the other phase is open circuited, is now

only 60 volts. The effective value of the current in the first

winding is 62'5 amperes. If the current wave had been a sine
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curve, we should have expected that the maximum demagnetising
forces would have occurred at the instants when the armature

current had its maximum values. Since the frequency of the

induced electromotive force in the field magnet windings is double

that of the alternating current, this induced E.M.F. will have its

maximum value one-eighth of a period after the armature current

has its maximum value. The phase of the alternating current

component of C, however, will depend on the magnetic leakage
and hence, even when the current ^ is sine shaped, it would be

difficult to determine the time lags between the maximum values

of ^ and C. We see from the figure that, for the given machine,
one set of maximum values of C occur nearly at the same instants

as the maximum positive values of ilt and the other maximum
values occur about one-eighth of a period later than the maximum

negative values of il .

Fig. 65. 2330 K.V.A. Caffaro Generator.

The three phase generator shown in Fig. 65 is one of several

which were supplied by the Oerlikon Company to the generating
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Tests of a

large three

phase
generator.

station of the power transmission line at Caffaro in the north

of Italy. Each generator is used in conjunction with

a transformer immersed in oil, which is kept cool by

pipes through which water flows. One of these trans-

formers is shown in Chapter xi, and its efficiency

curve is given. The generator voltage is raised to 40,000 by
means of the transformers, and this is the voltage between

each of the transmission wires. The total weight of each

generator is 82,000 pounds, and the weight' of the revolving field

system is 30,000 pounds. The output of each machine is 233

amperes at 10,000 volts, and the rotor makes 315 revolutions

per minute.

In Fig. 66 the short circuit and open circuit characteristics of

this machine are shown. The working pressures vary between

Fig. 66. Curves for 2330 kilovolt ampere three phase generator (Oerlikon

type 6235). The machine runs at 315 revs, per minute, and its voltage is varied

from 900010,500 as desired.

9000 and 10,500, so that points on the load characteristics

corresponding to working values of the amperes and volts lie
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between the thick lines shown on the diagram. Parts of the

wattless characteristics at 130 and 150 amperes are shown, and

parts also of the load characteristics when cos
i/r

is equal to 1 and
when cos

-x/r
is 0*75. The efficiency curve 77, in terms of the load

when the power factor is unity, is also given. When the power
factor is 0'75, the efficiency curve is practically the same, at small

loads, as the curve shown. At the maximum load on this power
factor the ordinate of this curve is diminished by about one per
cent. only.

Fig. 67. Curves of the losses in a 2330 kilovolt ampere three phare generator

(Oerlikon type 6235).
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Load losses.

The losses of the Oerlikon generator for different loads are shown

by the curves in Fig. 67. The resistance of one phase
of the armature winding is 0*19 of an ohm, and the

resistance of the windings of the field magnets is 0'52 of an ohm,

both being measured when warm. It should be noticed how

rapidly the copper losses in the armature increase on inductive

loads.

The curves showing the performance of the hundred kilowatt

The efficiency separate exciter used in conjunction with the above
of the exciter. machine are shown in Fig. 68. The machine is

shunt wound; the armature resistance is 0'0015 of an ohm and

Fig. 68. Open circuit characteristic and efficiency curve of a 100 K.W. separate
exciter. When running at 600 revs, per minute it has an output of 800 amperes at

125 volts.

Armature resistance= 0-0015 ohm.

Shunt resistance= 10-5 ohms.

Loss at no load = 6-3 kilowatts.

the resistance of the shunt winding is 10'5 ohms, both being
measured when warm. By varying the resistance of the rheostat
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in the shunt circuit, the armature being driven at a constant

speed of 600 revolutions per minute, we get the no-load voltage

curve by plotting out simultaneous readings of the volts and

amperes for different positions of the contact maker of the

rheostat. The difference of the P.D. drop at the terminals with

a current of 800 amperes when the excitation is 7 and 104 amperes

respectively should be noticed.
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CHAPTER III.

Dangers from the harmonics in the E.M.F. waves. Methods of analysing

waves. Blondel's method. Pupin's resonance method. Armagnat's

method. Analysis of electromotive force waves. Resonance of the first

harmonic. Resonance of the fifth harmonic. Resonance of the seventh

harmonic. Resonance of the eleventh harmonic. Interference of two

resonating harmonics. Measuring irregularities in the speed of alternators.

Causes of the harmonics in electromotive force waves. Harmonics caused

by slots. Harmonics in the E.M.F. waves of three phase machines.

Harmonics introduced by armature reaction. Annulling harmonics by

special windings. Methods of preventing the slots in the armature from

producing harmonics. References.

IN many distributing systems we have mains of high electro-

static capacity in circuit with transformers having
Dangers from r

.

harmonics in considerable inductance, and the armature of the

alternator itself has also considerable inductance.

We have seen in Vol. I, p. 82, that when we have a condenser of

capacity K in series with an inductive coil whose inductance is L,

resonance of the nth harmonic in the applied potential difference

wave ensues when

where / is the frequency of the first harmonic. In this case, very

high potential differences are established between various parts of

the circuit, sometimes causing sparks which break down the in-

sulation of the cables, or of the armature or transformer windings.

As a rule LK^LirfJ- is .much smaller than unity, so that there is

little danger of resonance with the first harmonic. The danger
arises when there is a pronounced high harmonic. The above

formula shows that the nth harmonic will resonate with only the

I/ft
2

part of the capacity required for resonance by the first harmonic.
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It would be dangerous to run up an alternator, which had a jagged
electromotive force wave, to its normal speed with its field excited

if its terminals were connected with mains having considerable

electrostatic capacity. There would be a serious risk of the

resonance of some of the harmonics at particular speeds. It is

therefore essential to consider the causes of these harmonics in

the electromotive force wave of the machine, and whether there

are any methods of preventing their formation. We shall first

consider methods of analysing the wave forms of alternators into

their various harmonics.

The wave form of an alternator can be found directly by means

of an oscillograph, ondograph, or rheograph. We can

analysing then apply various analytical methods to analyse this

curve into its harmonics. It is found, however, in

practice that owing to the irregularities in the speed of the engines

driving the alternators, etc., the curves cannot be traced with suf-

ficient accuracy, to make graphical methods useful, and so recourse

is had to experimental methods of finding the amplitudes of the

harmonics and their phases relative to the fundamental harmonic.

Let f(t) denote the electromotive force wave of the machine,

then by Fourier's Theorem we have

f(t) = ^An sin ncot + ^Bn cos ncot ...............(1)

= 2 VA n
* + Bn

2 sin (ncot + c/>n) ............ (2),

T>

where tan
(j)n
= ^.A n

There is no constant term in the series as f(t) is a purely

alternating function. In order to find f(t) we have to determine

the amplitudes ^An
* + Bn

2 of the various harmonics and their

time lags <f>n .

If we apply the potential difference wave we wish to analyse

to the terminals of a non-inductive resistance R, then
Blonder* ^ current wave in this resistance will be similar to
method.

the applied potential difference wave, since by Ohm's

law i=f(t)/R, and therefore the curves of i and f(t) only differ in

the scale of the ordinates. Thus, if we can analyse the current
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wave in the non-inductive resistance into its various harmonics,

we can find the corresponding harmonics in f(f). The time lags

of the harmonics in the potential difference and current waves

will be the same in the two cases, but the amplitudes in the

former case will be R times the amplitudes in the latter case.

Let the current i pass through the fixed coil of an electro-

dynamometer, the reactance of this coil being negligible compared
with R, and let the current from one phase of an auxiliary two

phase alternator which produces a sine shaped electromotive force

wave pass through a non-inductive resistance and through the

moveable coil. When the speed of the auxiliary machine is

varied, we get large deflections of the dynamometer at par-

ticular frequencies. Let us suppose that the auxiliary current

is / sin (nwt a), then, we have

=
2ft

(A n cos a -Bn sin a),

where A n and Bn are the coefficients of sinncot and cos nwt in (1).

Hence, by Vol. I, p. 66, if k be the constant of the electro-

dynamometer and Dl be the deflection, we have

jj (An cos a Bn sin a)
= Ic^Dl .

JL-td

Similarly by sending the current I cos (ncot a) from the other

two terminals of the machine through the moveable coil we find

that

^ (A n sin a. + Bn cos a) = &2D2 ,

where D2 is the new reading of the dynamometer.
Therefore

(An
* + Bn*y = 2Rk* (A2 +A2

)VA

and thus the amplitude of the nth harmonic is found. We have

assumed that a remains constant during the time of taking the

readings JD, and D2 . It would be advisable therefore that the

auxiliary machine be connected, through a variable speed gearing,

directly with the shaft of the alternator.

R. II. 8
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In Pupin's method the potential difference wave, which is to be

analysed, is applied to the terminals of a circuit con-

resonance sisting of a condenser K in series with a choking coil L
which contains no iron and the eddy current loss in

which is negligible. Pupin placed an electrometer across the

condenser K, but in practice an electrostatic voltmeter is now

more convenient. The capacity or the inductance is varied con-

tinuously, and the values of K and L for which the voltmeter

readings attain maximum values are noted. These voltmeter

readings enable us to determine the amplitudes of the various

harmonics in the potential difference wave.

Let in denote the nth harmonic in the current wave
;
then we

know (see Vol. I, p. 81) that

an sin (na)t 4-
<f>n ifrn)

where an = ^A n
* + Bn

2
,

LKtfco2 - 1
and tan n =

Now the amplitude of in is a maximum when nco V
'LK equals

unity, and is given by

in = - sin (na)t

Hence i
n

'

is in phase with the nth harmonic of the applied

potential difference wave and is a simple sine wave.

If en denote the nth harmonic of the potential difference wave

at the terminals of the condenser, then

e=4 li'dt

n
cos na)t +

(f)n)KnuR

Lnw ,
,

,

, >-
-^-

an cos (na)t + </>,
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Therefore, if Vn be the effective value of en ,
we have

and
Lnw

Now, if R be small compared with Leo, the amplitudes of the

other harmonics in the applied P.D. wave are very small compared

with Vn when n equals l/27rf\/LK. Hence Vn practically equals

the reading of the electrostatic voltmeter, and thus an can be

found. The amplitudes of the other harmonics are found in the

same way. It is to be noted that this method does not determine

the phase differences of the various harmonics.

Armagnat uses an oscillograph instead of an electrostatic

voltmeter. In this case we can easily arrange to get

metluS
1 **' 8 a Future f the potential difference wave and of its

resonating nth harmonic on the screen at the same

time. We arrange a condenser in series with a choking coil and

find the current wave in the circuit by means of an oscillograph.

The wave of potential difference is found by means of a second

oscillograph the circuit of which, in series with a large non-

inductive resistance, is placed in parallel with the circuit of the

first oscillograph, which is in series with the condenser and the

choking coil. Exact resonance ensues when the amplitude of the

nth harmonic, shown by the vibrations of the mirror of the first

oscillograph, has its maximum value. If the oscillograph be

standardised so that we know the value of the current which

produces the observed maximum deflection, we can find an ,
for

an
= RIn nearly, where R is the combined resistance of the oscillo^

graph circuit and of the choking coil. The observed current is

practically equal to in .

Again, since there is resonance, in and en are in phase with one

another. By noting, therefore, the angle of lag, between in and

the applied potential difference wave on the screen, we can find < n .

We have assumed, hitherto, that, when resonance ensues with a

particular harmonic, the other harmonics produce currents which

are negligible in comparison. In many cases this assumption is

82
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not permissible. We shall now find the values of the other

currents when there is resonance of the nth harmonic. In this

case, we have

and since

sin {(n + m) wt_
^n+m - R

n + (i-
we have

T (n + m) gn+
ln+m ~

{(n + m)
2 ^2 + i

In practice, the interference of the first harmonic is usually

much the most troublesome. In this case,

T 1

n* - I)
2 2

o>
2

}*

'

while In = -.M

Hence the greater the ratio of Leo to R the smaller will be the

effect of this interference. It is therefore important to arrange
that the resistance of the resonant circuit shall be as small as

possible. The minimum value of this resistance, if the applied

voltage cannot be varied, is limited by the maximum permissible

readings of the oscillograph. The presence of harmonics other

than the nth has generally only the effect of producing a slight

curvature of the median line without appreciably altering either the

amplitude or the phase of the nth harmonic. This will be seen in

Figs. 70 and 71 below. Sometimes however nodes and loops are

produced (Fig. 73).

Again we have

tan

= (m +

R
mn \ Leo\

njm + n R '

When Lo)/R is large, it will be seen that ^rn+m is practically

equal to + 90 degrees when there is resonance of the nth harmonic
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if m be positive. If m be negative, so that n + m is less than n,

then ^n+m will be nearly
- 90 degrees.

Suppose that a small error is made in adjusting the resonance

so that

where 6 is a small fraction, then, in this case

. O, sin (nwt + < n
-

.
,

sin (norf +

and tan ilr = _f_ .KnwR
These formulae show that, if the regulation of the resonance is

not quite exact, both the amplitude and phase of the nth harmonic

are affected. It is necessary, therefore, that the variation of LK
be done in a manner that is practically continuous. A variable

inductance of the Ayrton and Perry type is suitable, or a large

drum on which flexible wire can gradually be coiled so as to in-

crease continually the value of the self-inductance of the circuit.

Unless the speed of the alternator is almost perfectly constant

it is practically impossible to photograph the resonance curves, as

a slight variation of speed makes the resonance no longer perfect.

Also, the greater the ratio of L to R the more difficult it is to get

exact resonance. Hence it is sometimes necessary to increase the

resistance of the resonant circuit so as to diminish the effects of

the irregularities in the speed of the generator.

The following experimental analysis of an electromotive force

wave was made by Armagnat. The machine ex-
Analysis of J

electromotive perimented on was a small rotary converter, with two

distinct windings on its armature, so arranged that

the applied direct current potential difference was equal to the

effective value of the alternating voltage. The pressure of the

direct current supply circuit was unsteady, and, owing to this

cause, it was almost impossible to get photographs of the curves

at the moment of exact resonance. The frequency of the alternating

current was about 26.
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In Fig. 69, e gives the shape of the wave of electromotive force

which is analysed, and i^ gives the phase of the

principal harmonic. In this case the value of L was

2'006 henrys, of K, 9 microfarads, and the resistance

of the circuit was 204 ohms. The value of fa (Fig. 69) is zero,

and aj measured in a certain scale is 6500.

Resonance of
the first

harmonic.

Fig. 69. Eesonance of the first harmonic ir

In Fig. 70 the fifth harmonic is approximately in resonance,

but the interference of the first harmonic is evident.
Resonance of

. . .

the fifth The equation to the curve marked i in the figure is

approximately
harmonic.

i = /! sin (cot 7T/2) + /5 sin (5 a)t 4- < 5 ).

Putting cot equal to zero we get

i' = /i + /5 sin < 6 .

When at is 2?r/5, we have

2-7T
// T **/

|

i = A cos ^- + /5 sm <f>5
.

o
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Similarly we can write down the values of the ordinates when cot

is 4-7T/5, 6-7T/5 and 8?r/5. Thus, we get by addition

r A 2-7T 87T\
i -H i"+...= /! ( 1 + cos +...+ cos -r

J
+ 5/5 sin 5

= 5/5 sin
(f>5

.

Therefore

/5 sin <i5
= - -' = I.

Also when a)t is ?r/2 we have

/5 cos 05 = z/ = m.

Therefore /5
= Vf2 + m2 and tan 5

=
//m.

The values of L, K and R in this case were 0*240, 3 and 13

respectively. The sum of the five ordinates i + i" + . . . is practically

Fig. 70. Resonance of the fifth harmonic.

zero while i^ is large. Thus
<f>5

is zero and a5 is 1375 ,
that is, 13i/.

On the scale in which o^ is represented by 6500, a5 is represented

by 136.

Approximate resonance of the seventh harmonic is shown in

Fig. 71. The interference of the first harmonic is
Resonance of

.

the seventh again in evidence. We can find I7 and <f>7 from the
harmonic. . n i T

curve in practically the same way as we found 1 5
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and
<f)5

. Starting from t equal to zero and taking the ordinates

at distances 2-7T/7 apart, we have

i' + i" + ..

I7 sin 7
=

^
,

and I7 cos </>7
=

i/,

where i/ is the value of i when wt is Tr/2.

Fig. 71. Resonance of the seventh harmonic.

The values of Z, K and J were 0'240, T6 and 6'8 and the

values of a7 and < 7 are 57 and 4- 37T/4.

In both figures 70 and 71 the amplitude of the component

produced by the first harmonic is about a quarter of that produced

by the resonating harmonic.

Fig. 72. Resonance of the eleventh harmonic.
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In Fig. 72 the eleventh harmonic is nearly in resonance, and

the interference of the first harmonic is now much
Resonance of

the eleventh less. In this case, the values of L, K and R were

O240, 63 and 13 respectively and the approximate
values of an and

c/>u are 357 and TT. The variations of the

angular velocity of the machine are now in evidence, and the

amplitude of the curve i is continually varying.

The curve i shown in Fig. 73 illustrates the curious effect

produced by the interference of the eleventh and
Interference of r
two resonating thirteenth harmonics.

The values of L, K and R which produced this

effect were O'lOG, 0*90 and 181 respectively. By this experi-

Fig. 73. The thirteenth harmonic interfering with the eleventh harmonic.

mental analysis Armagnat finds that the equation to the curve e

is approximately of the form

e = 6500 sin wt 4-136 sin 5wt + 75 sin (7o> + 3w/4)
4- 357 sin (llwt

-
IT) + 90 sin ISwt.

The electromotive force wave contains other harmonics, the

seventeenth for example, but their amplitude is quite negligible

when compared with the amplitudes of the harmonics given
above.

Resonance methods can also be applied to measure irregu-

larities in the speed of an alternator. If, for example,

irregularities
^n an oscillograph we suppress the displacement of

o" alternators
^e spot of light in the direction of the time axis we

get a luminous straight line. The length of this line

is proportional to the amplitude of the wave of current passing
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through the oscillograph. If this luminous line be primarily due

to a resonating high harmonic of the electromotive force wave, the

variations in its length will indicate slight variations in the speed
of the machine. Now if we let it fall on a strip of sensitive

paper wound on a drum which is made to move synchronously

with the axis of the alternator, we get a trace on the strip the

breadth of which is proportional to the speed of the alternator.

If we have an irregular distribution of the magnetic flux in

the air-gap of an alternator, then, since the electro-

motive force is due to the armature conductors being
cut bv or cuttin lines of force

>
it is obvious that the

E.M.F. wave will be irregular. In order, therefore,

that the electromotive force wave on open circuit may be a sine

curve it is necessary that the distribution of the flux density

round the air-gap at every instant follow the harmonic law. With

smooth core armatures this can be attained approximately by

making the pole pieces of a suitable shape. In modern alternators

the field magnets are of cast steel, but the pole pieces are

laminated and are cut back so that the distribution of the flux

in the air-gap is often approximately sine shaped.

When there are slots in the armature it is evident that the

flux density in the air-gap cannot follow the harmonic law, and so

in this case we should expect to find harmonics in the E.M.F. wave.

Also, when an alternator is working on a load, the reaction of the

currents in the armature will distort the field, and harmonics will

be introduced into the electromotive force wave of the machine.

This latter effect could only be got rid of by constructing a

machine with negligible armature reaction. We shall first find

the order of the harmonics introduced into the electromotive force

wave by the slots in the armature.

Let us consider the case of a polyphase alternator, the field

magnets of which rotate. Let us suppose that the
Harmonics -n i

caused by armature has slots so that there will be a continual

variation of the reluctance of the air-gaps as the field

magnets rotate. If there are n slots in the polar step, then,

during the time that a point on the circumference passes over the
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nth part of this distance, the flux will go through all its values.

This time is the 2nth part of the period of the alternating current.

Now, if 47rd?/10 be the reluctance of the path of the field flux, we

have, on open circuit,

Q_n'C

where < is the flux traversing the path and n'C the ampere-turns
of the exciting current producing this flux. Since (ft fluctuates

with a frequency 2n/T, <& will vary, and an electromotive force will

act on the exciting circuit, inducing in it an alternating component.
The effect of this induced current is to diminish the amplitude of

the variation of <I> from its mean value <I>m . It has no effect on

the frequency 2nf of the fluctuations of <, where /is the frequency
of the alternating current. We may therefore write

where F(2ncot) is a periodic alternating function the maximum
value of which is unity, and e is generally a very small fraction.

Now, if < be the instantaneous value of the flux embraced by
an armature coil, we can write

By Fourier's Theorem we may write

F! (cot)
= AI sin (cot otj) 4- A s sin (Swt 3 ) + . . .

,

and F (2nmt) = B, sin (2ncot
- &) + #3 sin (Gncot -&) + ....

Hence a typical term in the series for 2^mFl (cot) F(2ncot) is

2< wApBq
sin (put

- ap) sin (qZncot
-

q)

= mApBq cos {(2nq -p) cot + ap fiq }

- <&mApBq cos {(2nq +p)cot-ap - q }.

The orders of the harmonics in
<f>
due to this typical term are

therefore

2nq+p and 2nqp.
Now the electromotive force is proportional to the rate at

which
<t>

varies with the time, hence the order of the harmonics

in the electromotive force wave will also be 2nq-\-p and 2nqp.
Therefore the lowest harmonics due to the slots which are
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introduced into the electromotive force wave of a polyphase
machine on open circuit are 2n + 1 and 2nl respectively.

The same reasoning applies also to single phase machines on

open circuit, the lowest harmonics introduced by the action of

the slots being 2n~L and 2% 4- 1.

The lowest possible orders of the harmonics introduced into

the electromotive force waves of three phase machines
Harmonics in

the E.M.F. can easily be written down by the above formulae,

phase Consider, for example, a three phase machine having
one slot per pole and per phase, and therefore having

three slots in the polar step. The lowest harmonics introduced by
the action of the armature slots will be the (2 x 3 l)th and the

(2x3 + l)th, that is, the fifth and the seventh. If the machine had

two slots per pole and per phase then the lowest harmonics would

be the eleventh and the thirteenth, and if it had three slots per

pole and per phase they would be the seventeenth and the nine-

teenth.

In Fig. 73 we saw the effect produced by the interference of

the eleventh and thirteenth harmonics. To a first approximation
we can assume that the equation to this curve is

y = /n
'

sin (llx
-
|j

+ /' sin

If we make the further assumption that /u
'

and /13

'

are each equal
to unity, we get

y = 2 sin x sin 1 2#

as the equation to the curve. This curve is shown in Fig. 74, and

it will be seen that it is not unlike the curve in Fig. 73. Blondel

has suggested that when considering resonance in net-works in

practice, when eleventh and thirteenth harmonics are involved,

it is sufficient merely to consider this curve, which we may
regard as a twelfth harmonic with a periodically varying ampli-
tude. The curve shows the effect of the alternate increase and

diminution of the reluctance caused by the six teeth in the polar

step. It is to be noted that the disturbing effect changes sign

in each half of the period of the first harmonic. This change of

sign is well shown at T'
t

and T (Fig. 74). In practice we are
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only able to calculate very roughly the lowest frequency at which

resonance will ensue in a net-work. It is sufficient therefore to

12 84 56
Fig. 74. The jagged component of an E.M.F. wave produced by six slots.

make sure that this frequency does not approach 2nfm value, where

n is the number (odd or even) of the slots in the polar step and /is
the frequency of the alternating current.

Let us now consider how harmonics are introduced by arma-

ture reaction, taking first the case of a single

Stroduced by phase machine. Suppose that the current in the

reaction
6 armature follows the harmonic law. The flux pro-

duced by this current will be oscillatory and will

rotate with the same angular velocity as the armature when the

armature rotates, or will be fixed in direction when the field ro-

tates. In the first case the oscillatory magnetic field rotating with

the angular velocity oy/p, where 2p is the number of poles, may
be resolved into two equal magnetic fields, one of which is fixed in

space and the other rotates with the angular velocity 2o)/p (see

Vol. I, p. 297). The fixed flux sometimes gives rise to harmonics

owing to the distortion of the magnetic field it produces. The

rotating field introduces a third harmonic, as the expression for the

value of the resulting field contains terms of the form sin sin 2&)

and this maybe written Jcos&> Jcos3&>. In- the second case

the oscillatory field being fixed can be resolved into two equal

rotary fields revolving with angular velocities co/p and co/p re-

spectively. One of these is fixed relatively to the field and the

other rotates with a velocity 2&>/jo relatively to it. Therefore,

as before, we find that a third harmonic is introduced by this
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latter field. Hence we generally find a pronounced third harmonic

in the potential difference wave of a single phase machine when

loaded.

In polyphase machines when the currents in the windings in

the armature follow the harmonic law, then, to a first approximation
at least, the resultant flux produced by these currents is fixed

relatively to the field. In practice the field flux is affected by
small periodic fluctuations due to the armature currents and so

harmonics arise from this cause.

Let us consider the electromotive force generated in one phase
of a polyphase generator with a distributed winding

by in ^ne armature. In order to fix our ideas let us take

n s
^e case of an ordinary ring armature with a Gramme

winding and suppose that the two slip rings to which

the phase winding is connected have p coils between them, the

angle between the planes of two adjacent coils on the armature

being a. Let el} e2 ,
... ep be the electromotive forces generated in

the coils, then

el =A l sin (wt </>!)+... +An sin (naot < n ),
and

ep
= A ! sin {cot ^ (p 1) a} + . . . +An sin {nwt

-
(f>n
- n (p

-
1) a}.

Therefore, since

e = el + e.2 + . . . -f ep ,
we have

in (wt
</>!

sin
(
na)t

(f)n +^ no.
)

.

\
'

/

. . pna I . no. . , , . pa. I . a , .

Hence if sin *- / sin is less than sin
*^-

/ sin - the ratio
2 / 2 2t I JL

of the amplitude of the ?ith to that of the first harmonic is less in

the resultant wave than in the wave generated in a single coil.

We see also that if sin(jtwa/2) is zero and sin(na/2) is not

zero, the nth harmonic in the resultant wave vanishes. In a single
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phase machine pa. is TT, and as n is always an odd number in

practice the nth harmonic is not annulled.

Consider now the case of a three phase machine with a rotating

armature. In this case we have pa. equal to 2?r/3, hence

pna./Z
= mr/3, and not/2

=
n7r/'3p.

If n be a multiple of 3 but not of 3p, there is no nth harmonic

in the resultant electromotive force wave.

The variation of the reluctance of the magnetic circuit due to

the slots in the armature can be prevented by two

methods. In the first method the slots (Fig. 75) are

inclined at a certain angle to the axis of the rotor.

This angle is chosen so that a line drawn parallel

to the axis through the middle point of a slot directly

under a side edge of the pole piece will pass through the middle

Methods of

preventing the

slots in the
armature from

producing
harmonics.

Fig. 75. Inclined slots.

P is the pole piece.

Fig. 76. Inclined pole piece. The
slots are parallel to the axis of

the rotor.

point of an adjacent slot directly under the opposite edge of the

pole piece. Whether the field or armature rotates, the reluctance

of the magnetic circuit of the field will in this case be constant.
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An alternative constructional method of eliminating the

harmonics caused by slots is to make the slots parallel to the

axis and to incline the pole pieces so that if we project the edge

Fig. 77. Field magnets with inclined pole pieces to obtain a pure sine wave.
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of a pole piece on to the armature, this projection will be parallel

to the line joining the middle point of a slot directly under the

side edge of a pole piece to the middle point of an adjacent slot

directly under the opposite edge (Fig. 76). This method of getting
a sine wave of E.M.F. was adopted as early as 1892 by the Oerlikon

Company in the generator they constructed for the historic

Frankfort-Lauffen power-transmission experiments. In Fig. 77 is

shown the rotor of an Oerlikon generator in which this device is

employed.
Both these methods are found very useful in practice ;

and if,

in addition, the pole pieces are bent slightly back so as to make
the air-gap of variable depth, it is possible to construct machines

which on open circuit will give an electromotive force wave,

practically indistinguishable from a sine wave.

In Fig. 78 the mesh E.M.F. of a three phase alternator with

inclined pole pieces is shown. It will be seen that the first

Positive half of the wave of the mesh E.M.F. of a three phase

Oerlikon alternator.

Type 6295. 2350 Kws. 315 Kevs. 42-.

harmonic is very nearly coincident with the wave. The alternator,

which has sixteen poles, was built by the Oerlikon Company and

has an output of 2350 kilowatts at 315 revolutions per minute.

Its frequency is therefore 42.

R. n. 9
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Owing, however, to the fact that the effects of hysteresis are

always appreciable, it would be practically impossible to get a

perfect sine wave.

It has been suggested that a sine distribution of flux might be

obtained by arranging the windings on the field magnets so as to

get this effect. In most cases this would present practical

difficulties, and it would be uneconomical owing to the leakage
of the field flux.
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WHEN an alternating current dynamo is supplying current to

any circuit, then, owing to the electrical losses in>

m^to^s"
0115 ^6 macnine

>
the mean power given to the rotor by

the prime mover, must be greater than the electrical

output. A torque has to be applied to the pulley of the rotor to-

overcome the magnetic attractions and repulsions between the-

field poles and the armature poles, as these forces, in accordance-

with Lenz's law, tend to prevent the rotation. Now the polarity

of the armature coils alternates with the same frequency as the

current. If, therefore, the values of the currents in the armature

coils at any instant were the same as when the machine is acting

as 'an alternator, but if they were flowing in the opposite direction r

the attractions and repulsions would become repulsions and attrac-

tions, and so the induced torque would be in the direction of

rotation and the machine would act as a motor. In order,,

therefore, to turn an alternator into a motor we need to supply it

92
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with alternating current the frequency of which is exactly equal
to the frequency of the current it would give, when running as an

alternator at the same speed. A motor of this kind is called

a synchronous motor. It is found in practice that its efficiency is

high, and that a considerable mechanical load can be put on the

pulley, without pulling it out of step with the pulsations of the

supply current. In order to understand the action of this type of

motor, let us consider the working of a single phase alternator

which has an armature rotating in a bipolar field.

Let us first consider the simple alternator illustrated in Fig. 79.

We suppose that the armature is simply a bundle of

alternator. iron stampings wrapped round with a coil of in-

sulated wire the ends of which are connected with

two slip-rings. We may suppose that the field is produced either

-N

Fig. 79. Single phase alternator or synchronous motor.

by permanent magnets or by electromagnets excited by direct

current. If we rotate the armature at a constant speed, the

electromotive force generated in the coil will be a maximum
when it is in the position shown in the figure, and it will be zero

when the axis of the coil is horizontal, that is, when it embraces

the maximum magnetic flux. If 8N is the position of the axis of

the coil at the moment when we begin to measure time, we may,
on making certain assumptions, express the electromotive force

generated in the coil by E sin wi, where to is the angular velocity

of the armature of the two-pole machine and CO/^TT is therefore the

frequency of the alternating E.M.F. generated.
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If the external circuit be closed through a large non-inductive

resistance, the current in the armature will be in phase with the

armature electromotive force. Hence the current will be a maxi-

mum in the position of the armature shown in Fig. 79, and if the

direction of rotation is with the hands of a watch, that is, if it

rotates against the brushes shown in the figure, the arrow heads

will indicate the direction of the current. The top part of the

armature will, therefore, be a north pole. It will be seen that

work has to be done against the magnetic attractions and re-

pulsions of the field poles in order to maintain the mean angular

velocity. If g denote the instantaneous value of the moment,
about the axis of the armature, of the mechanical forces which

have to be applied to it, so that its angular velocity may not vary,

gw will be the rate at which work is given to it, and if this be

expressed in watts, we shall have

gco
=

ei,

where e and i are the instantaneous values of the electromotive

force and current respectively ;
we neglect the losses due to

friction, eddy currents and hysteresis. Since e is zero twice in

every revolution, and i is in phase with e, we see that in this case

g is also zero twice in every revolution. When e and i have not

the same time lag, g must vanish four times every revolution and

it is sometimes negative and sometimes positive. If the machine

has 2p poles, the frequency of the alternating currents generated
will be pwl^Tr, and the torque will vanish 4*p times every revolu-

tion, provided that the current and electromotive force do not

vanish simultaneously. If they do vanish simultaneously the

torque will vanish 2jo times every revolution.

Let us suppose that when the angular velocity of the armature

_.
,

of the above machine is a>, the slip-rings are put in
Bipolar
synchronous circuit with mains supplying alternating current of

frequency f, and suppose that o> is 2?r/! Then, if

the armature is rotating in the direction against the hands of

a watch as indicated by the brushes in Fig. 79, and if the current

is a maximum in the position illustrated and flows in the direction

of the arrow heads, there will be a torque in the direction of the

motion as the top part of the armature is a north pole. A quarter
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of a period later the axis of the armature coil will be horizontal.

The current reverses in the armature at this instant, and we

see that the side of the armature which is uppermost is always

a north pole. Similarly, the lower side of the armature is always

a south pole, and hence the torque is always in the same direction.

The effect of the alternating current, therefore, in this case, is to

produce a mechanical torque which tends to accelerate the angular

velocity of the armature.

Let us now consider the case when the alternating current

supplied can be represented by I sin cot. We suppose

*na^ t is zero when the axis of the armature coil is in

the position SN(Fig. 79). Owing to the direction of

rotation being opposite to the direction it has when the machine

acts as an alternator, the electromotive force developed will be

always in opposition to the current, and hence work will be given

to the armature. This electromotive force, developed in the

armature, is generally referred to as the back E.M.F. of the arma-

ture. Since, in our case, it is proportional to sin cot, we may
write

gco
= El sin2

cot,

hence g = G sin2
cot

= J<?-<? cos 2,
where G is the maximum torque on the armature. We see at

once that the mean torque over a whole revolution is %G in

this case.

In general, when the alternating current supplied is

/ sin (cot a),

we have g = G sin cot sin (cot a)

\G cos a |6r cos (Zcot a).

The mean torque is therefore -J6r cos a and it only vanishes when

,a is + or ninety degrees. For all values of a between these

limits the mean work done on the armature during a revolution is

positive. If, however, a be greater than ninety degrees, the mean

.torque is negative, and the armature is giving work to the

electric circuit. In this case the machine is acting as a

generator.
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the

In Fig. 80 the mean torque is shown graphically for all values

of a. BOB' is a vertical line through the axis of the

armature, and NOS is the horizontal line. The

lines OB and OB'

are each ec
l
ual to $G and circles

are described with these lines for diameters. We can

suppose that lines, like OP, drawn to points on the circumference

of the upper circle are positive, and that lines, like OP', drawn to

points on the circumference of the lower circle are negative. If

Fig. 80. OP gives the mean value of the accelerating torque when the phase
difference between the current and the back E.M.F. is the angle BOP.

the angle .BOP is a, OP equals BO cos a, that is. ^Gcosa and

hence this line gives the value of the mean accelerating torque,

when the current lags by an angle a behind the counter E.M.F.

generated in the armature. If the angle .BOP' is a', then, since

OP' is drawn to the lower circle it is negative and equals ^G cos a',

the mean retarding torque when the angle of lag is a'.

Let us consider the case when the current supplied to the slip-

rings lags ninety degrees in phase behind the back electromotive

force of the armature. In this case, a will be ninety degrees, and

so OP will be zero. If the armature now slows down, the

difference in phase between the back E.M.F. and the current will

diminish, and OP will rapidly increase, tending to drive the

armature more quickly. On the other hand, if the armature

quickens when a is ninety degrees, a retarding torque OP' will be

applied to the rotor by the electrical forces.
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When a is less than ninety degrees and ^G cos a is the mean

value of the retarding torque of the mechanical forces applied

to the armature, the machine will run as a motor, and, if the

moment of inertia of the armature be considerable, there will be

only slight fluctuations in its speed due to the fluctuations in the

value of g. When the armature slows down the mean torque

increases, and when it quickens the mean torque diminishes.

Hence an alternator used in this fashion makes a very satisfactory

motor. It is called a synchronous motor because it is always

exactly in step with the alternating current supplied.

If the machine have 2p poles, and we make the same assump-
tions as before, then

g = G sin pcot sin (pwt a)
Multipolar
synchronous = ^Q COS OL ^G COS (2pa)t QL\
motor.

where G is the maximum value of the torque when

the current and the back electromotive force are in phase with

one another. We see that, in general, g vanishes 4>p times during
one revolution of the armature. The angular velocity of the

armature is 27rf/p, and it therefore makes 6Q//p revolutions per

minute. A twenty-pole machine, for example, supplied with

alternating current, having a frequency of 50, would make 300

revolutions per minute.

Consider a polyphase alternator with its terminals connected

with three mains supplying three phase currents, of
Polyphase

r J & '

synchronous frequencyft
and suppose that the angular velocity of

the rotor is 27rf/p where 2p is the number of poles.

If we make the assumption that the currents and the back electro-

motive forces in the armature coils follow the harmonic law, then,

if g be the instantaneous value of the torque exerted by the

magnetic forces on the armature, we have

gco
= El

jsin put
sin (pa)t a) + sin Iput + -^- J

sin (pcot a. + -=-
j

/m LOT*
~~ a

4?r
sin M + -=- sm ~~ a + ~o

= #/. cos a,

and, therefore,

g = (3^//2o>) cos a.



IV] ARMATURE REACTION 137

In this case, therefore, the torque on the armature is absolutely

constant. We can also easily show that when the armature

quickens the torque is diminished, and when it slows down the

torque is increased. Hence a polyphase alternator, provided that

it generates a sine wave of E.M.F. and is supplied with harmonic

currents, will run very smoothly as a synchronous motor.

In Chapter I we explained Blondel's theory of two reactions.

The current in the armature was resolved into two

reaction of components, one of which was in phase with the

armature electromotive force, and the other was in

quadrature with it. The former merely produced
a transverse magnetisation of the field, and the latter partially

demagnetised or magnetised the field magnets, according as

the current was lagging or leading. Formulae were found

for these effects. In a synchronous motor the same effects

will be produced, but since, when an alternator is acting as

a motor, the currents iri the armature are flowing in the opposite

direction to that in which they flow when the machine is acting

as a generator, the magnetic effects will be reversed. That is to

say, the transverse magnetisation will be in the opposite direction

to that in which it is in a generator and a lagging current will

now tend to magnetise the field magnets whilst a leading current

will demagnetise them. The formulae for these effects are given
on pages 38 and 47.

We shall now discuss what happens when the load on a syn-

chronous motor is varied. In this case, as a rule,Generator and
synchronous the phase difference between the current and the

applied potential difference alters, and this produces
a change in the magnetic field of the generator. It is therefore

essential, when discussing the working of a synchronous motor, to

take into consideration also the generator or generators supplying
it with electric power.

In order to simplify the problem as much as possible, we will

consider the case of two alternating current machines which are

similar to one another in all respects. We shall suppose that

they are running at the same speed and that their terminals are
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in metallic connection. If their field magnets be excited, there

will be in general an electromotive force round the circuit of the

\

Fig. 81. Vector diagram of a generator and a synchronous motor.

two armatures and the same current will be flowing in each. In

the case when the electromotive forces generated in the two
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machines are equal at every instant but act in opposite directions

round the circuit of the two armatures, there will be no current,

and hence no power will be conveyed from one machine to the

other. In order that power may be transmitted, a current must

flow, and hence the two electromotive forces cannot be in exact

opposition in phase. The simplest method of discussing this

problem is to represent the electromotive forces generated in each

machine by vectors. We can suppose that these vectors take

account of armature reaction. In Fig. 27, page 52, the line

joining and C gives us the vector of the armature electromotive

force.

Let OC in Fig. 81 represent the effective value Vt of the

armature electromotive force of the generator, and

let OA represent the effective value F2 of the arma-

force
r

s

motive ture electromotive force of the motor. Join AC and

bisect it in B, then twice OB represents the resultant

of Vl and F2 in magnitude and phase, and is the effective value of

the electromotive force that drives the current round the circuit.

Since by the triangle of vectors Vl is equivalent to the vectors OB
and BC, and F2 is equivalent to OB and BA, it follows that BA
and BC are each equal to the voltage V between the connecting
mains. The lower part of the diagram OBC refers to the generator
and the upper part to the motor. Hence, although BA and BC
represent the same voltage, yet we have drawn them as if they
were in opposition in phase. The phase of the potential difference

voltage must be drawn in opposite directions when looked at from

the generator or the motor end of the circuit. In one case the

current in a circuit bridging the mains would appear at a parti-

cular instant to be going from left to right, whilst in the other

case it would appear at the same instant to be going from right
to left.

If V be the potential difference between the connecting mains,

Formula for
an(^ ^ the phase difference between the electromotive

the potential forces of the two machines, then
difference at

F=i(F1

a + y3
2 -2F1Fa cos^)t ...... (1).

The maximum value of F is therefore ^(Vl -\- F2),
and it has this
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value when cos 6 is 1, that is, when the phase difference between

the two electromotive forces is 180 degrees. In this case, the

electromotive forces are in opposition so far as the circuit of the

armatures is concerned, but they would be in phase as regards

Fig. 82. Resultant of two rounded electromotive force waves when their angles

of time lag are (a) 0, (b) 15, (c) 30, (d) 60, (<) 90, (/) 120, (g) 150.

their action on a circuit bridging the two mains joining the

terminals of the machines. We shall see in Chapter VI that this

is approximately the case when the two alternators are running in

parallel.

If the machines give electromotive force waves of different



IV] THE SHAPE OF THE WAVE 141

shapes, then 6 can never be as great as 180 degrees. For example,

if the electromotive force wave of the generator were sine shaped
and had an effective value of 1000 volts whilst the motor wave

were rectangular and had an equal effective value, the maximum
value of V would be 974'8 volts.

The effective value of the electromotive force wave producing
the current round the circuit of the two armatures is

rauuknt
U

represented in magnitude by twice OB, and in phase

^romotive by Q (pig. 81 ) ^^ however, tells us nothing
about the shape of the resultant wave. If the waves

were sine curves then, whatever value the angle of lag between

them might have, their resultant would also be a sine curve. In

the general case, however, the shape of the resultant wave is quite

different from the shape of either of its components. In Fig. 82

the variation in the shape of the resultant of two equal circular-

shaped waves is shown for the case of angles of time lag equal to

0, 15, 30, 60, 90, 120 and 150 degrees respectively. It will be

seen that when the time lag is small we get a rounded wave, but

when it is nearly 180 degrees we get a very peaky one.

If both the component waves are peaky, then, as a rule, the

shape of their resultant is rounded when they are nearly in

opposition, and peaky when they are nearly in phase. This

change of shape of the wave of the electromotive force which

produces the current in the armatures makes the phase difference

between it and the current produced a variable quantity, and so

we are not justified in making the assumption that the impedance
of the circuit of the two armatures is constant. Again the

armature reaction of each machine depends on the magnitude
and phase of the current, and so the shape of the electromotive

force waves must also vary from this cause.

If the circuit of the armatures of the alternator and the

synchronous motor acted like a non-inductive resist-

ve
h
c

e

tor
Urrent

ance, the current vector would be represented in phase

by OB (Fig. 81). In general, however, the phase
difference between the current and the resultant electromotive

force is large. Suppose that OK in Fig. 81 represents this

vector, and let the angle BOK equal 7. If we suppose that OK
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is in the plane OAC, the angle KOA would be the phase difference

between the current and the motor electromotive force, and the

angle KOC would be the phase difference between the current

and the generator electromotive force. This would be true if the

waves which OA, OC and OK represent were all sine waves.

In practice it is not true, and hence for a rigorous theory we

would need to have recourse to solid geometry (see Vol. I,

Chapter Vlli). The formulae got by making the assumption that

the vectors are all in one plane are useful and instructive, but it

has to be remembered that they are only approximate.

The formulae for the power generated in the alternator and

received by the motor can easily be deduced from

tWStrf Fig. 81. In this figure

- OC is the vector of the alternator E.M.F., Flf

take of the Q fe fae vector of the motor E.M.F., F2 ,motor.

OK is the vector representing the current, A lt

AOC is the phase difference 9 between OA and OC,

and the angle BOK is 7.

The angle BOK represents the angle of lag of the current behind

the resultant E.M.F. round the circuit of the armatures. This

resultant E.M.F. is represented by twice OB.

We shall also denote the impedance of the circuit of the two

armatures and their connecting mains by Z, the electrical power

generated by the alternator by W^ and the electrical power given

to the motor by W2 . Since KOC is the phase difference between

the vectors OK and 0(7, that is, between A and Fx ,
we get

Now, since Z is the impedance of the circuit of the armatures, and

2 . OB is the resultant E.M.F., we have

2. OB
Z '

Again

2 . OB cos KOC = 2 . OB cos (BOG - 7)

= 2 . OB cos BOG cos 7 + 2 . OB sin BOCsm 7

=
( Fj + Fo cos 6) cos 7 + F2 sin 6 sin 7

= F! COS 7 + F2 COS (0
-

7).
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Hence, substituting for A cosKOC in the formula for Wl} we get

2 cos(0-7)} ............ (2).

Similarly TF2
= - V2A cos AOK

= -
jlKcosy + ^cos^ + y)} ......... (3).

When the running is steady (2) and (3) give us the relations

between the various quantities involved. We see from (3) that

Tfo is a maximum when 6 is TT 7. It is then equal to

p ( 7, -F, cos 7).

Hence the smaller the impedance Z of the circuit, and the nearer

7 is to 90 degrees, the greater is the load that can be put on the

motor.

If we write TT 7 + a for 6 in equations (2) and (3) we get

Condition for Vl ,^ Tr ,
stable run- Wl

= ~~
{ V^ COS 7 F2 COS (27 )}

ning. -^

y
and TP2

= -~
2

{ V\ cos a F2 cos 7}.
Zt

If we suppose that a varies owing to irregularities in the speed of

the motor or generator, then

dW1 F,F2 .

dW, V,VZ .

and -5= =--=r^ sm a.
aa Z

Hence if a be positive W2 diminishes when a increases. We see

that when the motor quickens the power given to it diminishes,

and similarly when it slows down the power given to it increases,

and so the electric forces called into play tend to keep the speed

constant. Also, in practice, 27 is always greater than a, and

hence Wlt the load on the generator, diminishes as a increases,

and so this also has the effect of tending to restore a to its original

value. Therefore positive values of a correspond to stable positions

of running.
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y
When a is zero. W2 has its maximum value -

{Fi F2 cos y].

Hence the smaller the impedance Z of the circuit, and the nearer

7 is to 90 degrees, the greater is the load that can be put on the

motor. We see also that if power is to be given to the motor, F2

must be less than Fj/cos 7.

Again, since

W2Z F2
cos a = 17= + T

- cos 7,
*! *2 M

it follows that for every load TF2 on the motor there is a positive

and a negative value of a which satisfies this equation. We have

already seen that the positive value of a corresponds to the stable

position of running, and we can show in an exactly similar way
that the negative value corresponds to an unstable position.

/Y \

When TF2 is zero, a is cos"1

( -^ cos 7 )
. Hence the stable positions

\'i /

of running are given by
= TT 7 + a,

fV \
where a can have any value between and cos"1 ^ cos 7 )

. If F2

\'i
'

be less than F1? may be greater than TT. In this case we may
regard the generator as the leading machine. For different loads,

a has different values, but in all cases the mean angular velocity

of the rotor is exactly the same, namely ^trf/p, where / is the

frequency of the alternating current and 2p is the number of poles

of the motor.

When a load is put on a synchronous motor gradually, a slowly

diminishes. When the load is so great that a vanishes, then the

angular velocity of the rotor diminishes, and the applied potential

difference being no longer in step with the back electromotive

force of the armature, a large pulsating current is set up, which

blows the fuses or opens the magnetic cut-outs which are used to

protect the machine.

We know that the square of the effective value of the total

electromotive force round the circuit of the armatures

is Fi
2 + Fs

2 + 2FiF2 cos 6, where is the phase differ-

ence between Vl and F2 . Hence, if Z be the
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impedance of this circuit, and A the effective value of the current

[flowing in it, we have

= V* + F2
2 + 27iF"a cos 6

= V? + V* + 2FXF2 cos l(B + 7)
-

7}

= Fj
2 + F2

2 + 2F!F2 cos (0 + 7) cos 7
+ 2 F!F2 sin (0 + 7) sin 7.

[Substituting
for cos (0 + 7) and sin (0 -f 7) their values obtained

from (3) and noting, since the minimum value of for steady

running is 77 7, that sin (0 + 7) is either zero or negative,

we get

A*Z* = Fj
2 - 2W2Z cos 7 - F2

2 cos 27
- 2 sin 7 { F,

2F2
2 -(W,Z+ V* cos 7)^ (4).

This is the fundamental equation of the synchronous motor. If

we square this equation and simplify we get

- V* + F2
2 + 2F2Z cos 7)

2 = 4 sin2

7 (A*Z*F2
2 - TF2

2 2

).

This equation is sometimes given as the fundamental equation,

but (4) is more useful in practice as the values of the

variables found from it correspond to stable positions of running

only, and the current is given directly in terms of the other

variables.

We shall first consider the effect of varying the excitation of

the motor or the generator on the current in the circuit, and on

the power factor of the motor load.

In equation (4), if we regard Vl as variable and F2 ,
TF2 ,

Z and

Effect of V as cons*an*s then, for each value of Vlf we get
varying the a definite value of A. Equating the first differential
excitation of . .

the motor and coefficient of A with regard to V1 to zero, solving
the generator.

resulting equation for F, and substituting in (4),

we find that the minimum value of A is TT2/F2 . Hence the

minimum value of the current got by varying the excitation of the

generator is TF2/F2 . It is, therefore, in exact opposition in phase
to F2 .

Similarly, when we vary the excitation of the motor, the

minimum value of the current is given by
V ( F"2 W )i' 1 *1 W 2A =

2Z cos 7 cos2

7 Z cos 7
'

R. II. 10
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In this case we can show that the current is in phase with Vlt so

that the minimum value of the current is TT// "Pi ,
where W/ is the

electric power generated when Vl and A are in phase.

The above theorems can be proved more easily as follows.

When we vary Fj by altering the excitation of the

generator, the power W2 given to the motor circuit

is AV2 cos02 ,
where 2 is the phase difference be-

tween A and F2 . Since this power is constant, A will be a

minimum when cos #2 is a maximum, that is, when 2 is 180,

and in this case A is TF2/F2 .

Graphical
solution.

B B

(a) (6)

Fig. 83. (a) The minimum value of the current when the excitation of the

generator is varied. (6) The minimum value of the current when the excitation of

the motor is varied.

In Fig. 83 (a) gives the diagram for the minimum value of the

current when the excitation of the generator is varied.

Again, from equations (2) and (3), or directly from the fact that

the electrical power generated by the alternator equals the power
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given to the motor together with the power expended by the

driving electromotive force, we have

Now Wl equals AVl cos01 ,
where Ol is the phase difference

between A and Vlf Substituting this value for Wl in the above

equation, and solving the resulting quadratic equation for A, we
find that

Fjcosfl (F^cos
2 ^ _ W, U"

2Z cos 7 (4
2 cos2

7 ^0087}
'

For every load Wz there are two possible values of the current,

but the larger one corresponds to the unstable position of running,
and so we have prefixed the negative sign to the radical in the

above equation.

Since the differential coefficient of A with respect to cos 6l is

a negative quantity, it follows that A diminishes as cos B1 increases.

Hence it has its minimum value when cos a is unity, and this

gives us the same value of A as before. Also, in this case, TT/

equals AVl} and hence the minimum value of A is TFY/Fj. This

case is illustrated in (6) Fig. 83. The vector OK of the current

coincides in direction with 0(7, the vector of the generator electro-

motive force.

In order that the value A of the current given by equation (4)

may be real, W2Z + F2
2 cos 7 must be less than FjFo..

Jt follows tnat tne value of T/2 must lie between
the

motor electro-
motive force.

,

( V n- W 7M ^2^
2 cos 7 (4 cos2

7 cos 7]

W Z}^^and .

2 cos 7 (4 cos2

7 cosy]

We see that if cos 7 be small, the back electromotive force of the

motor may be considerably greater than the electromotive force

of the generator which is driving it. The maximum value of TF2

is, however, F1

2

/4Zcos7.

Suppose, for example, that 7 is 60 degrees, then F2 must lie

between

Fj + (Fx

2 - 2W2Z)$ and V1
-

( V* - 2 W,Z)$.

The maximum value of W2 in this case is V-C/2Z.

102
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If T] denote the ratio of the power given to the motor to the

total power generated by the alternator, then rj is
Efficiency of r

.

the trans- the fractional efficiency of the transmission. With
mission. , .

our usual notation

and hence for a given load TF2 the efficiency is a maximum
when the current is a minimum. If we vary the excitation

of the generator, F2 remaining constant, the minimum value

of the current is TT2/F2 . Hence the maximum efficiency in this

case is

1

and this diminishes as TF2 is increased.

Again, when we vary the excitation of the motor, keeping V1

constant, the maximum efficiency occurs when A has its minimum
value Wi/Vlt and in this case

V, ( V* W~
2Zcos<y

Hence the maximum efficiency when the load is W2 can be

found.

The above results point out the following method of procedure
as being theoretically desirable, when we wish to

increasing the increase the efficiency by raising the voltage. First

adjust the excitation of the motor until the current

is a minimum. Then increase the excitation of the generator

until the current is again a minimum. Then go back to the

motor and increase its excitation until the current is reduced

again to its smallest value, and so on backwards and forwards

between the two machines until the desired efficiency is attained.

In practice a limit to the possible excitation is soon reached. It

would save time to over-excite the motor in the first instance, but

the theoretical method is worth remembering.
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As the fundamental equation (4) is complicated, we shall

illustrate it graphically by drawing curves for various

particular cases. It is to be remembered that we
nave made the assumption that the current vector

and the electromotive force vectors are in one plane,

and we now make the further assumptions that the impedance Z
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Load on motor.

Fig. 84. Variation of current with the load on a synchronous motor.

and the angle of lag 7 remain constant as the excitations vary.
The curves arrived at are very similar to those obtained by actual

experiments, and show that the main phenomena connected with

the working of synchronous motors could have been predicted
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from the properties of triangles. On the other hand the anomalous

results sometimes obtained when the electromotive force waves are

very distorted from the sine shape, show that our assumptions are

not justifiable in these cases.

In Fig. 84 a curve is shown illustrating how the current A
varies with the load TF2 on the motor. The angle of lag 7 of the
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40
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a small increase or diminution of this load. On the other hand,

when the load is heavy, a slight increase of it will cause a large

increase of the current.

Fig. 85 shows how the current varies with the excitation of the

generator for three different loads which are to one

the current another in the ratios 1 : 16 : 25. The angle of lag 7

utionofthe has again been taken equal to 45 degrees. When

running at a high voltage increasing the load

diminishes the current, but at a low voltage increasing the load

increases the current.

The curves in Fig. 86 show how the current varies with the

inn
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excitation of the motor when 7 is 90 degrees. The curve 'a'

shows the machine running on a zero load. In this
Variation of
the current case the curve is simply two lines meeting one
with the exci- ,, ., .

1

* *
A
. , . mi

tationofthe another at the point 10 on the axis of x. The

curves (

b' and 'c' show the machine running on

a light and a moderate load respectively. The curves do not

intersect one another in this case.

In Fig. 87 we have taken 7 equal to 45 degrees, all the other

data remaining the same as in the preceding illustration. It is to

1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18

Excitation of Motor.

Fig. 87. The curves 'a,' '&' and 'c' are the V curves of a synchronous motor

on light loads when 7 is 45.

be noted that the curves now cross one another. Comparing
them with the curves shown in the preceding diagram it will

be seen that the new curves are much narrower than the old, and
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that there is a superior as well as an inferior limit to the excitation

of the motor.

Curves similar to those shown in Figs. 85, 86 and 87 were

first obtained experimentally by Morel ey. They are generally

called V curves.

The power factor of the motor circuit is the cosine of the angle

between the current vector OK and the line joining

the

ri

power
f

the extremities of the two vector electromotive forces

factor with the f) A anrl DC! sVmwn in Ficr 81 When the motor is
load.

is smal

1-0

09

0-8

07
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the current OK lags behind the applied potential difference EC
in phase. As we increase the excitation, F2 increases, and OK
becomes parallel to BC for a particular excitation. It would

apparently follow that the power factor must always be unity for

a particular excitation. We have, however, to remember that we
have made the assumption that OK and BC are in one plane,
and this is never exactly true in practice.

In Fig. 88 '

a' shows the relation between the power factor

and the load when 7 is 90 degrees, and '

b
'

the relation when 7 is

45 degrees. In ' a
'

the power factor increases with the load, and

attains its maximum value 0*96 when the load has its maximum
value of 120 kilowatts. In '

b
'

the power factor is unity when the

load is 42 kilowatts, and it then diminishes. The maximum

permissible value of the load is now only 56 kilowatts.

i 2 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Excitation of Motor.

Fig. 89. How the power factor of a synchronous motor varies with the

excitation at constant loads.
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In Fig. 89 the data, with the exception of the curve ' a
'

which

represents a very light load, are the same as for the
Variation of J

.

the power curves in Fig. 86, so that the two sets of curves can

excitation of
*

be compared. For each curve the power factor

equals unity for an excitation denoted by 10. For

values of the excitation less than this, the current lags behind the

applied potential difference by an angle <f>,
where cos< is the

power factor, and for values of the excitation greater than 10, the

phase difference is leading. From Fig. 83(6) we see that when

we gradually increase the excitation of the motor, the current

attains its minimum value after the power factor becomes unity.

The ease with which large lagging or leading currents can be

obtained by under-exciting or over-exciting synchronous motors

sometimes makes them useful in general testing work when large

choking coils or condensers are not available (see page 55).
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CHAPTER V.

Blondel's bipolar diagram. Lines of equal power when the excitation of the

generator is varied. Lines of equal phase when the motor excitation is

constant. The excitation of the generator required to give a power
factor of unity. The circle limiting the current vector. Example.

Synchronous motor supplied from constant potential mains. Rotary
condenser. Reactance motors. Synchronous motors with alternating
fields. The starting of single phase synchronous motors. Polyphase

synchronous motors. The starting of polyphase motors. Determination

of the moment of inertia of the rotor. Methods of determining the

efficiency of a motor. Brake tests. Experimental results. Advantages
of synchronous motors. References.

THE following graphical method of studying the working of a

_. , ,, synchronous motor is instructive and is useful in
Blondel's J

bipolar practice. We make the assumptions that the

vectors of the electromotive forces and the currents

can be represented by lines in one plane, and that the impedance
of the circuit of the armatures is constant. The effects of

armature reaction are also neglected. In the diagram (Fig. 90)
OP represents the armature electromotive force Vr of the generator
and 00l the armature electromotive force F2 of the synchronous
motor. The angle POO^ is the supplement of the phase difference

between Fj and F2 and hence, by the triangle of vectors, Of
is the effective value of the resultant electromotive force round

the circuit of the armatures. Let the line 0^ give the phase
of the current and draw PB perpendicular to 0^, then 0^ will

represent the watt electromotive force acting (Vol. i, p. 158) round

the circuit. If we multiply the effective value A of the current

by OiB we get the power expended in heating the armature
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windings. Owing to eddy currents this power will be greater

than R . A'2
, where R is the resistance of the armature coils. The

value of OJ5 will be therefore greater than R. A. In practice,

it is customary to assume that 0^ equals nR.A where n is a

number greater than unity. Usual values for n are 1*5 and 2.

o

Y"

Fig. 90. Blondel's bipolar diagram.

YOiY' is inclined at an angle y to O^X. OjP represents on a certain scale the

current vector, when the phase difference between it and F2 is measured from O^Y'.

If Z be the impedance of the circuit of the armatures, OJP will

be equal to Z .A and if 7 be the phase difference POJZ we have

cos 7 equal to nR/Z.
Since 0-f equals Z . A we can make Of represent the current

in magnitude by assuming that the length representing one

ampere is Z times the length representing one volt. In other

words the scale in which the amperes are measured must be

Z times the scale in which the volts are measured. We can also

make 0-f represent the current in phase by assuming that the

phase difference between this vector and V2 is measured by the

angle it makes with a line Y'O^Y which is inclined to OX at an

angle 7.

To prove this, let us suppose that the line Y'O^Y makes an

angle 7 with OX. Since the angle POiB is also equal to 7, it

follows that the angle PO^Y equals the angle BO^X and therefore

the angle BO^O equals the angle PO^Y' Hence, if we measure
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the phases of the electromotive force vectors by the inclinations of

these lines to OX we can measure the phase of the current by the

inclination of Of to OjF'. We see, therefore, that if the scale

of the amperes is Z times the scale of the volts and the phase of

OjP is measured by its inclination to OjF', then O^P will represent

the current vector completely.

This diagram is known as the bipolar diagram. It enables us

to see easily how the current and electromotive force vectors vary

with the excitations of the machines.

If PCX (Fig. 90) be drawn at right angles to Oa F, then, in

the scale in which the currents are measured, O^C will represent

the watt current with respect to F2 ,
and PC will give the wattless

current. If the power given to the motor is TF2 ,
we have

where 0C represents the watt current. Its length must be

measured in the ampere scale.

Let the excitation of the motor and the load on it be kept

constant, whilst the excitation of the generator is

varied. Then, since TF2 and F2 remain constant, thepower

ton watt current 1C must also be constant. For all

of the gene- excitations of the generator, therefore, under the
rator is varied. '

given conditions, P must lie on the line PCX. This

line may be called, therefore, a line of equal power. In general,

all lines drawn perpendicular to Ol
Y are lines of equal power.

If P and are on the same side of O^Y, PC the wattless

component of the current will be lagging with respect to F2 . In

this case the current will be leading with respect to the P.D,

applied at the motor terminals, and so the armature reaction will

weaken the field of the motor. If, however, P and are on

opposite sides of OjF, the wattless component CP will be leading

with respect to F2 and the field of the motor will be strengthened

by the armature reaction. It has to be remembered that in

obtaining the diagram we have neglected these reactions.

In the last chapter we saw that, when the phase difference

between Fj and F2 is TT J, the running is unstable. This can
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be seen also from the bipolar diagram. When 'OP (Fig. 90) is

perpendicular to PX, the angle P00l is equal to the angle FOX^
It is therefore equal to 7. Hence the angle between V1 and F2 is

TT - 7. In this case OP, which represents Vlt is a minimum for the

given load corresponding to the watt current OjC. If the load

were to diminish, Of would diminish, and there would be a stable

position of running, but if it were to increase, OP would not

reach the new power line drawn through C, there would be no

position for stable running, and the machine would drop out of step.

When Fj equals 0(7, the wattless component of the current

with respect to F2 vanishes, and when V1 is greater than OC the

wattless component is leading. For values of Vl greater than OX
we may consider that the generator is the leading machine.

The phase difference between a current vector Of (Fig. 90),

and the vector 00 l , representing the armature

equaf phase electromotive force of the motor, will be POiF'.

motor excita-
Hence this angle represents the phase difference

tioniscon- between any of the current vectors, which point

in the direction Of, and the motor E.M.F. The

line Of may be called, therefore, a line of equal phase. In

general, every line drawn through O l is a line of equal phase.

When the current is in opposition in phase to F2 , OjFwill be

the line of equal phase. If be the phase difference between V*

and F
2
in this case, we see from the diagram that

F! cos 6 F2
= ZA cos 7

and hence V^A cos (TT 6) = V^A 4- ZA 2 cos 7.

This could also have been written down directly, since the

electric power generated must always be equal to the power

given to the motor together with the power expended in heating
the circuit.

In Fig. 90 the angle POiF is not the phase difference

between the current and the applied potential

of

h
t

e

he
x

g
c

en
a
e-

ion
difference at the motor terminals. If L (Fig. 91)

tfgive

e

a
uired be the middle point of Of and the lines have the

ofunu
factor same meanings as in Fig. 90, then, if we make

the assumption that the motor and generator are

exactly similar machines, OL will represent in magnitude and
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phase the potential difference applied at the motor terminals.

If the angle OLOl equals the angle LOJ5 (7) then OL and O^B
will be parallel and the phase difference between them will

vanish. Whenever, therefore, the angle OLOl is 7, the power
factor of the motor circuit will be unity. In this case, the locus

of L is a circle having 00 X for a chord and touching OjF at Ol .

Fig. 91. When P lies on the circle OjNP, the power factor of the motor circuit

is unity.

The locus of P will also be a circle, for if we draw through P
a line PO' parallel to LO this line will always cut X produced
in a point 0' so that O'O equals 00X and the angle O^PO' will

equal OLOl and will therefore be constant. This circle will also

touch OiY at Oi and its radius will be equal to Va cosec 7.

Whenever P lies on this circle the power factor of the motor

circuit is unity.

When XP represents the current, we have seen that CP

represents its lagging wattless component and OiG represents its

power component. From Fig. 91 it is obvious that, when the

power factor of the motor circuit is unity, the current must have
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a component which lags relatively to the counter electromotive

force of the motor armature. In this case, the armature reaction

always tends to weaken the field of the motor and to strengthen
the field of the generator.

It will be seen at once from Fig. 91 that as 0^0 increases, OP
increases. Hence as the load on the motor is increased we must

increase the excitation of the generator if the power factor of the

motor circuit is to be kept at its maximum value. We also see

that when the load on the motor remains constant and we

gradually increase the excitation of the generator from a low

value, the power factor of the motor circuit attains its maximum
value before the current attains its minimum value.

If ^4.max. e the maximum permissible value of the current in

the armature, then OJP in figures 90 and 91 must be

less than Z . ^.max . Hence, if we describe a circle
/T-,. _^ N . . ~ ,.

(rig. 9z) with centre (Jl and radius equal to Z.A m&^
P must be somewhere within this circle, for all possible positions

of running.

limiting the
current vector.

Fig. 92. The radius of the circle PP' is the maximum current the armature

can carry. P lies within this circle in all practical cases.

R. II. 11
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Suppose that we have two similar and equal machines, one

acting as a generator and the other as a synchronous

motor, and suppose that they are coupled together

through a long transmission line. Let (rl , lj) be the constants for

the line and (nR, L) be the approximate constants for the arma-

tures, then, making the usual assumptions, we get

tan 7 = o> ft + 2Z)/(n + 2nR),

and Z* = (n -f 2/i)
2 + o>

2

ft + 2L)
2
.

Hence 7 and Z can be determined approximately.

Draw a line OOi (Fig. 92) equal to the armature electromotive

force of the motor. With centre 1 and radius Z . ^4 max .
describe

a circle. Along O^Y mark off points at equal distances apart and

through these points draw lines perpendicular to OjF. These

lines will give the lines of equal power and the distance between

them can be chosen, so that each represents a load which is a

multiple of a kilowatt. Now suppose that the excitation of the

generator gives an electromotive force on open circuit of F, volts.

With centre and radius V1 describe a circle, and let it cut the

circle which limits the current in P. We see that, if we draw

a line from P perpendicular to X F, the maximum power that the

transmission line can transmit for this excitation of the generator

can be read off at once along : Y. The maximum possible power
that the line could transmit would be OjP' and to transmit this

power the generator would have to be capable of producing an

electromotive force on open circuit equal to OP'.

We suppose that the excitation of the synchronous motor is

constant and that 7 also remains constant. With
Synchronous '

.

motor supplied centre (Fig. 93) and radius Vl} equal to the

potential constant potential difference between the mains,
mains '

describe a circle PP. If the load on the motor

be "FF2 ,
mark off, on the scale of the volts, a length OjZ) along OjF,

so that V^.O^DJZ equals TF2 . In the case we are considering,

we can neglect the impedance of the rest of the circuit in com-

parison with that of the motor armature. Hence Z will be

practically equal to the impedance of the motor armature. If we

draw DP perpendicular to Oi F, then, OP will be the vector of the

applied potential difference.
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We see from the diagram that, if the perpendicular through
M is the tangent to the circle at P', O^M corresponds to the

maximum load on the motor. This point, however, corresponds

to an unstable position of working, as the slightest increase of

Fig. 93. Diagram for synchronous motor working on constant potential

mains.

the load would make the motor fall out of step. Since OP' is

parallel to OjF, the angle P00l equals 7 and, at the maximum

load, W2 equals OO^O^M/Z, that is, F2 ( V,
- F2 cos y)/Z, which

agrees with the formula we found on page 143.

For a given distribution of power from a Central Station, the

Useof higher the power factor of the load, provided that

synchronous the current is lagging, the more economical will
motors for

raising the be the distribution, as the current, arid therefore
power factor. 1,1- i ,1

also the copper losses in the mams, and armature,

diminish as the power factor increases, the voltage and the load

remaining constant. Also, since the current is lagging, the

excitation has to be increased in order to neutralise the demagne-

tising effect of the armature currents on the field magnets, and

112
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this increases the total loss. Swinburne suggested in 1891 that

the power factor of a distributing system might be increased

by using over-excited synchronous motors at the supply station

to neutralise the wattless component of the load current. We
saw in Vol. I, p. 84, how a condenser shunt could be utilised to

furnish the necessary magnetising current for a choking coil.

In a similar way a comparatively small synchronous motor can

be employed to raise appreciably the power factor of a distributing

system.

Let us suppose that the effective value of the current in the

main is A l and that A sin fa is its wattless component. Let also

A z sin ^r2 be the wattless component of the auxiliary motor

current. If cos ^ be the value of the power factor when the

synchronous motor is running, we have

tan = A- sin A sin'A cos + A cos

If we wish a power factor of unity, A 2 sin ^2 would need to be

equal to A 1 sin ^. Hence the smaller the value of^ the smaller

the synchronous motor required. Now it is easy to see from the

theorems given in .Vol. I, Chap, vi, that a power factor of unity

could never be actually obtained. Let us suppose that cos ty is the

power factor required for satisfactory working. Then writing the

above equation in the form

A 2 sin ->|r2
= A l sin^ (1 tan ^Jr/tan A/^) A 2 cos ijr2

tan
ijr,

and regarding i/r
as constant, we see that the smaller the value of

i

\]rl)
for a given wattless current A l sin -\]r1 ,

the smaller will be the

value of A 2 smty<i. Hence the greater the power factor of the

load, for a given value of the wattless current, the smaller will be

the size of the synchronous motor required to raise the power
factor of the station to a desired value.

When a synchronous motor is used merely for regulating the

Rotary power factor of the load on a power station it is

condenser. sometimes called a rotary condenser. It is of especial

use in connection with long transmission lines working at very

high pressures as a small motor can supply both the lagging
current required at light loads and the leading current required
at heavy loads. For example, when a 6000 horse power plant
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in India, which transmitted power 90 miles, reached the limit of

its capacity, the installation of a 1000 kilovolt ampere rotary
condenser enabled 50 per cent, more power to be transmitted for

the same voltage drop.

When the number of turns in the windings of the armature is

Reactance large, the wattless component A sin
<fy

of the current

appreciably magnetises the field. Hence a motor

wound in this mariner will be self-exciting. It. is not possible,

however, to get much power from it, as the power factor needs to

be low in order that the wattless component of the current may
be sufficiently large to magnetise the field. Industrially, these

motors have not hitherto proved successful.

Ferraris pointed out that if we excite the field magnets of

a synchronous motor with alternating current from

nu>tors

r<

with
S

the supply mains, then, in certain cases, the machine

J
1

e

t

1

e

d

r"atmg will still act as a .synchronous motor but its speed
will be double that at which it runs when its field

magnets are excited with direct current. The windings of the

field magnets may be connected either in parallel or in series, with

the armature windings.

The working principle of the machine can easily be understood

from Fig. 79, p. 132. Let us suppose that the current is a maximum
in the position shown in the figure. At this instant the torque will

be in the direction against the hands of a watch. A quarter of

a period later the axis of the armature coil will be again vertical,

but, the current being zero, there will be little magnetism left

either in the field magnets or in the armature. A quarter of a

period later, the polarity of both field magnets and armature will

have changed, but the armature being in its initial position the

torque will still be in the same direction. Hence, the mean torque
over a whole period will not be zero but will act in the direction

against the hands of a watch. The machine, therefore, will act as

a motor when the speed is double that of synchronism. The

objections to this type of motor are the high speed requisite and

its low efficiency. It has the great advantage, however, of not

requiring separate excitation. It could be started by means of an
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ordinary small synchronous motor, excited by direct current, and

having half the number of poles of the large motor which is excited

by the alternating current.

An instructive method of discussing the action of this motor is

by means of the theory of rotary fields, explained in Vol. I, Chap. XIV.

The alternating field due to the field magnets can be replaced by
two fields of half the maximum strength rotating in space with

angular velocities co/p and co/p respectively. The oscillatory

field due to the armature current rotates with angular velocity

2a>/p, and hence it may be considered as made up of two rotary
fields rotating with angular velocities 3co/p and co/p respectively.

The mean value of the torque produced by the action of the

field which rotates with the angular velocity 3o>/p on the fields

rotating with angular velocities co/p and co/p will be zero.

Similarly, the mean value of the torque due to the fields

rotating with angular velocities <o/p and co/p will be zero.

The fields, however, which both rotate with an angular velocity

co/p will produce a steady torque and so the armature will

rotate.

Synchronous motors are not self-starting, and hence some

device has to be employed for this purpose. When

of slng^phase the power station is not very far from the generating

mo
n
tors

noUS
station, direct current from the exciter of the generator

may be transmitted by special mains to the exciter

of the motor, and the latter may be driven by its own exciter,

acting as a motor, until it attain synchronous speed. As about

ten per cent, of the total power of the synchronous motor may be

required and as the direct current is transmitted at a low

pressure, this method can only be applied economically in very

special cases.

When a small auxiliary direct current motor or a small

asynchronous induction motor (Chap. XII) is available the machine

may be started on a loose pulley. In order that the small motor

may not get overheated before the large machine gets up speed,

we have to use some device that permits the small motor to run

at approximately constant speed during the whole process. One

method of doing this is to mount the small motor on slide rails,
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and to put a small conical friction wheel at one end of its shaft.

This wheel presses on a large friction disc keyed to the shaft

of the synchronous motor. At first, the conical wheel rotates

near the circumference of the disc, and thus makes many turns

for one turn of the machine armature. As the machine speeds

up, the small motor is moved on its slide rails by means of a hand-

screw until the conical pulley reaches the centre of the disc when

synchronism is attained.

When no direct current or alternating current motor is

available to start the machine, its armature must be provided
with a special winding which starts the motor by producing, in

conjunction with the other windings, a rotary field. When the

machine gets up to synchronous speed the starting winding is cut

out and the load is put on the pulley, the machine now running as

a synchronous motor. We have seen in Vol. I, Chap, xiv, how

a rotary field can be produced by two currents which are not

in phase with one another. In order to obtain a powerful rotary

field we need to have the phase difference between the currents

approximately equal to ninety degrees. One way of doing this is

to put an electrolytic condenser in series with one of the circuits,

so that the current in it may be in advance in phase of the

applied potential difference, while the current in the other winding

lags behind the phase of the applied P.D. An electrolytic con-

denser generally consists of iron plates placed in a solution of

soda contained in an iron vessel. It will be seen that, during the

start, the motor is provided with currents in different phases just

like a two phase motor.

The theory of polyphase synchronous motors is practically

identical with that of single phase machines. We
Polyphase i

synchronous can regard the armature or the generator as con-

sisting of three single phase armatures all keyed

together ;
the phase difference between any two of the three

applied potential differences being 120. We can make a similar

supposition with regard to the motor. Since the components of

the torque due to the currents in the three windings generally

vanish at different instants, the torque on the armature of the

motor will be much steadier than in the case of single phase



168 ALTERNATING CURRENT THEORY [CH.

machines. In the case of sine waves and a balanced load, we have

seen (p. 136) that

gw = (3/2)^1 cos a

where g is the instantaneous value of the torque and co is the

instantaneous value of the angular velocity of the armature. On
the given assumptions, therefore, the power given to the armature

is the same at every instant and so the torque is absolutely

constant. Although owing to armature reactions, hysteresis, eddy

currents, etc., it is exceedingly unlikely that the given assumptions

could ever strictly be justified, yet, as the frequency of the

variations of the torque must be at least three times as rapid

as the frequency of the. alternating current, we see that its

variations will have little effect on the angular velocity of the

rotor.

The action that takes place between the currents in the

armature and the magnetic field in single phase machines is

different from the corresponding action in polyphase machines.

Let us suppose, for instance, that the field magnets form the

rotor. In single phase machines the magnetic field produced

by the armature currents is an oscillatory one and pulsates with

a frequency o>/27r. If there are 2p poles the angular velocity

of the rotor is oa/p. Now the fixed oscillatory field due to the

armature currents may be replaced by two magnetic fields gliding

in opposite directions with angular velocities a>/p and co/p

respectively, the intensity of each of the gliding magnetic fields

being each equal to half that of the fixed pulsating field. The

action of the field gliding in the opposite sense to the rotation

of the rotor adds nothing to the total torque, and thus, the torque,

produced on the rotor by a fixed pulsating field, will only be

equal to half that produced by a gliding magnetic field of equal

intensity.

In polyphase machines the armature produces a rotating

magnetic field, and hence there will be a torque on the rotor,

even when the latter is at rest, tending to turn it in the direction

of the rotation of the field. We have seen, in Vol. I, Chap, xiv,

that if H be the amplitude of the magnetic field produced in one

pole of the armature by a current in a phase winding, then
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is the strength of the rotating magnetic field produced by the

poles of the three phases. Hence, when the machine is running
at synchronous speed, the torque produced is three times as great
as the mean torque produced when it runs as a single phase
machine with only one of the phase windings in circuit. The

fluctuations of the torque, however, when run as a single phase
machine would be violent. The torque would vanish in this case

at least 2p times, and in general 4p times, every revolution of the

rotor.

To start a polyphase motor we open the field magnet circuit

and connect the armature with the polyphase mains
Starting .

r J r

polyphase through starting resistances. When the rotor attains

synchronous speed the field circuit is closed. At the

moment of switching in the armature windings and until the

motor gets up speed, the rapidly reversing flux in the field magnet

windings sets up very high electromotive forces which may give

rise to a spark and so break down the insulation. Hence the field

magnet coils are generally wound in sections which are on open
circuit during the start. When a direct current motor is available

it is generally best to use it to start the synchronous motors and

so avoid all the risks of a breakdown in the insulation.

The moment of inertia of a rotor may be determined by

noting the time that it takes to slow down after

both the alternating current supply for the armature

an(^ tne direct current supply for the field magnet
coils have been switched off. Let us suppose that

the rotor slows down from an angular velocity a>i to an angular

velocity &>2 in ^ seconds and that the retarding torque in dyne-
centimetres is g. It is found by experiment that g is very nearly

constant. Let Mk2 be the moment of inertia of the rotor about

its axis, and let 6 be the angle which a radius of the rotor makes

with the horizontal, t seconds after the era of reckoning. The

equation of motion is

7.2/3

Mk2
-j- = the moment of the applied forces
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and thus, by integrating,

where A is a constant.

If dd/dt is ft>j when t is zero and is o>2 after ^ seconds, we have

J/&X = A
and Mk*co2

= M.&X -
gtl ,

and thus gt^
= Mk* (o) l o>2).

If we now apply a constant torque g1 to the rotor by means

of a mechanical or an electrical brake, we get, in a similar

manner,

where 2 is the number of seconds the rotor takes to slow down
from the angular velocity w^ to the angular velocity &>2 when the

brake is applied. We have, therefore,

and g =

Hence finally Mk* = g1 1, t^/ {(t,
- 12) (X - o>2)}

and ftj and n2 the revolutions per second of the rotor at the two

given speeds can be measured by a tachometer.

The losses in a synchronous motor are due to heating of the

armature coils, bearing and brush friction, hysteresis,

eddy currents, wind friction and excitation losses.

I* i f und in practice that the retarding torque due

to the bearing and brush friction is nearly inde-

pendent of the speed, and so also is the retarding torque due to

hysteresis. Now experiment shows that the torque due to wind

friction is approximately proportional to the angular velocity of

the rotor, and it is generally assumed that the torque due to eddy
currents is also proportional to it. This latter assumption is,

however, often inadmissible. When the frequency of the alter-

nating current is high, when the eddy current losses in the pole

faces caused by the fluctuations in the value of the flax density

due to the slots in the armature are appreciable, or when eddy
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currents are induced in the copper conductors or unlaminated

masses of metal, this assumption must not be made.

On the given assumptions the torque due to hysteresis, bearing
and brush friction can be denoted by a constant, B. The sum of

the two torques due to wind friction and eddy currents may be

denoted by Deo where D is a constant and <w is the angular velocity

of the rotor. Let R be the resistance of the armature of the

motor and suppose that we run it at two different speeds w and co2 ,

on open circuit, with the field excited. If Wl and TF2 be the watts,

measured by a wattmeter, supplied to the motor at these speeds,

we have

Wl -EA l

* = (B + De>1)a> 1
= Be)1 + Da> 1

*

(1),

and W2 -RA,? = (B + Da)i)a)2
= Ba)2 + Da)2

2

(2),

where A l and A z are the readings of the ammeter, in series with

the armature, in the two cases. From equations (1) and (2)

B and D can be determined readily. Knowing the values of B and

D, the efficiency rj of the motor can be found approximately by the

formula,

rj
=

(W- RA* - Bco - D*t?)l(W + Z),

where W is the power taken by the motor from the alternating

current mains and X is the power expended in exciting the field

magnets. This method is due to Swinburne. In practice as the

load is increased so also is the excitation, and thus X in the above

equation is not a constant. When we can neglect the alternating

current component, due to armature reaction or to fluctuations of

the reluctance of the magnetic circuit, in the field magnet wind-

ings, the value of X, in watts, is the product of the reading of the

ammeter in the circuit of the field magnet coils by the reading
of the voltmeter placed across the terminals of the exciting

circuit.

The above method is purely electrical. When a transmission

dynamometer, that is, a transmission coupling which indicates the

torque which it transmits, is available, the test is best made as

follows. Couple the motor directly with the shaft of the generator,

by means of the dynamometer, in such a way that the motor helps

to drive the generator. The torque g on the shaft can be measured

by the dynamometer, and multiplying this by the angular velocity
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o) we get the load on the motor. This also represents the power
returned to the generator. If now we measure the power W, in

watts, supplied to the motor and also the power X required for

excitation, we have

<n=gu/(W+X).

In this formula, gw must be measured in watts, so that the unit in

which g is measured must equal 1C7

dyne centimetres. It is to

be noticed that this is an economical method of testing, as the

power taken from the generator W gw represents merely the

losses in the motor.

The efficiency of small synchronous motors can be determined

to an accuracy of about one per cent, by means of an

absorption brake. By this apparatus a retarding

torque, which can be easily measured, is applied to the circum-

ference of the pulley of the rotor by means of friction. As all the

useful power of the motor is expended in heating the pulley and

the surfaces in contact with it, special water cooling arrangements

have to be devised when the power expended at the rubbing

surfaces cannot be radiated away quickly enough. If gl be the

torque in dyne centimetres applied by the brake, we have

where &> is 2?m, and n is the number of revolutions of the shaft

per second. If the torque g be measured in kilogramme metres,

we have

77
=

9-Slgto/(W + X).

An ordinary direct current dynamo can be employed very

usefully as an absorption brake. The dynamo must have all its

losses carefully measured in the first instance, so that we know

approximately the power expended in hysteresis, eddy currents

and friction. For a twenty kilowatt dynamo the sum of these

losses generally lies in value between ten and fifteen per cent, of

the maximum rated output of the machine. An error, therefore,

of ten per cent, in determining, for example, the eddy current

losses will only introduce an error of about one per cent, in the

calculated value of the total power absorbed by the dynamo at

full load. The electrical output of the dynamo can be measured
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to an accuracy of about the half of one per cent, by means of

a carefully calibrated ammeter and voltmeter. The electrical

power generated is usually expended in a water resistance. Lead

plates connected with the terminals of the dynamo are placed

in a vertical position and at some distance apart from one another

in a tank containing salt water. The adjustment of the load is

made by varying the distance apart of the plates, by raising or

lowering the plates so as to vary the area of the immersed portion

of the plate or by both these methods.

The results of tests on a three phase synchronous motor made

by the Oerlikon Company are given in figures 94

and 95. The machine is designed for a frequency
of 50 and for an output of 525 horse power when

15 3 Excitat on

Fig. 94. Characteristics and V curves of a 525 H.P. Oerlikon Motor. The

curves are for no load, half load, and full load.
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the potential difference applied to each pair of slip rings is 3500.

The number of poles is 16 so that the armature makes 60 x 50/8,

that is, 375 revolutions per minute.

In Fig. 94, o.c.c. is the open circuit characteristic and s.c.c.

is the short circuit characteristic. V
lfl

is the V curve at full load,

F1/2
is the V curve at half load and F is the V curve at no load.

It will be seen that these curves closely resemble the theoretical

curves shown in Fig. 86, p. 151.

In Fig. 95, cos ^lfl
is the power factor curve at full load when

the excitation is varied, and cos >|r1/2 is the power factor curve at

half load. The curve 77 gives the efficiency at various loads,

the power factor being unity in every case. The curve Pex . gives

Fig. 95. The efficiency curve and the curves showing the losses in a 525 horse

power three phase synchronous motor, 3500 volts, 50 frequency, 375 revs, per

minute.
cos

\f/l / 1
= Power factor at full load,

cos ^1/2
= Power factor at half load.

the excitation losses, the curve PH gives the combined losses due

to hysteresis and eddy currents, the armature losses RA* are

given by the curve PR and the curve PF gives the losses due

to solid and air friction. The solid friction is the friction of

the bearings and the friction of the brushes pressing on the

collector rings.
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The high power factor obtained shows that the counter electro-

motive force wave of the motor and the electromotive force wave

of the generator are approximately sine shaped.

The advantages of synchronous motors are that they are simple
to construct mechanically, they can easily be wound

vantages of f r high pressures and, as a rule, their power factor

mo
n

to

h
rs

nOUS
is high. Their distinguishing peculiarity is that

they run at exactly the same speed at all loads.

The moment the armature gets out of step with the field large

alternating currents flow in it which cause the fuses to melt

or the magnetic cut-outs to open the circuit. The only way of

altering the speed is by altering the frequency of the supply
current. This constancy of speed is invaluable for some purposes
in connection with oscillographs, ondographs, rectifiers, etc. It is

also useful sometimes when we wish to drive a dynamo at a

constant speed.

If the power factor of a synchronous motor be high and the

resistance of the armature windings be small, the efficiency is also

high. In order to get a high power factor the wave of the

resultant electromotive force in the armature circuit must be

approximately sine shaped, and thus both the applied potential

difference and the back E.M.F. of the armature must be approxi-

mately sine shaped. Particular attention is paid to this point

by designers of synchronous motors. Motors which work well

when supplied with alternating current from the supply mains at

certain times of the day are sometimes found to take an excessive

current even on a light load at other times of the day. This is

due to variations in the wave shape of the supply. When the

power station is some distance from the supply station and the

mains connecting them have considerable electrostatic capacity,

the distortion of the wave shape of the pressure of the supply is

often excessive at light loads.

Synchronous motors are only of limited use for ordinary power
work from supply mains. The speed cannot be regulated and a

supply of direct current is wanted for excitation. Special starting

devices have also to be used. They sometimes set up phase

swinging (Chap. VI) which causes serious oscillations of the pressure
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between the mains of the supply circuit and a consequent blinking
of the lamps supplied from these mains.

A synchronous motor is often coupled directly to a direct

current generator, both the machines being mounted on the same

bedplate. The combination is called a synchronous motor generator.

There are several of these motor generators in the substations

connected with the Charing Cross Company's City of London

Works. The synchronous motors are supplied with current at

10,000 volts by means of three core mains connected with the

three phase generators at the power station. Each motor drives

either one dynamo or two balancing dynamos, the distribution

being on the three wire direct current system. To diminish the

risk of a breakdown, the motor generator sets are of very solid

construction and the high tension windings are heavily insulated.
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CHAPTER VI.

Phase swinging. B. Hopkinson's method. The stability of the motion in

special cases. General case. Products of the pairs of the roots of a

biquadratic. The criterion for stability. The period of the phase swing.

Effects produced by the distortion of the field. Amortisseurs. The

theory of damping coils. References.

WHEN a synchronous motor is running on a load, small periodic

Phase pulsations of the supply current can nearly always be
swinging. noticed whenever there is any change in the resisting

torque due to the load. In some cases these pulsations are

damped out rapidly. In others they are very persistent and

lead to instability of the motion, so that the machine falls readily

out of step. As the periodic time of these oscillations may be as

long as two or three seconds it can sometimes be measured easily.

The pulsations are due to variations of the angular velocity of the

rotor. If we consider a fixed radius of the rotor we can imagine
that the motion of this radius consists of isochronous vibrations

about a mean position which rotates with constant angular

velocity. The phase difference between the applied potential

difference and the back E.M.F. of the motor will therefore be a

periodic function of the time. It is customary to refer to the

period of the pulsations of the current as the period of the phase

swing, and the phenomenon is called phase swinging. It is to be

noticed that the period of the phase swing is large compared with

the period of the current, and so, in finding an approximate

formula for it, we can neglect the forces due to the relative

velocity of the rotor and the field. We shall take this into account

later on, but the following elementary discussion leads to a

formula for the period of the phase swing which is of practical

value.

R. II. 12
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We suppose that the generator is directly coupled to its

engine and that it runs at a speed which is uninfluenced by

slight variations in the load. Let TF2 be the power given to the

motor, then, by formula (3) on p. 143, we have

W2
= -( VJ/Z) cos 7 - ( VJTtlZ) cos (6 + 7)

= gc*+W .......................................... (1),

where g is the retarding couple due to the load, o> the angular

velocity of the rotor, and W the power expended in heating the

armature of the motor, overcoming friction, etc. We shall suppose
that the generator is large compared with the motor, so that its

speed is unaffected by the small fluctuations in the power taken

by the motor. We shall also suppose that the motor has only

two poles, and that the electromotive forces follow the harmonic

law, so that if 6 + x be the disturbed value of 6, x is the angle

between the actual position of a radius of the rotor in space and

the position it would have if the motor were running steadily.

Let Wz be the new value of W2 , then, neglecting for the

present the forces due to the relative angular velocity of the rotor

and the field, we have

cos (0 + 7 + *) ...... (2)

and therefore, by (1),

g'to' + W ' =
ga> + Fo + 2 ( Fx VJZ) sin (6 + 7 + a?/2) sin (0/2).

In practice o>' and o> are practically equal. We may also assume

that WQ is equal to W , and thus, since x is a small angle, we

have

(.9'
~~

9} M
~
(ViVz/Z) sm (0 + 7) > approximately.

Now, for steady running, 6 + 7 is greater than TT (p. 144). Let

us assume that is TT
i/r,

so that
i/r

must be less than 7. Let

Mk* be the moment of inertia of the rotor, then

d?xMk2

-^
= the moment of the effective forces about the axis

at2

of rotation = g g

sin (7
-

i/r)
. x.

Since, in practice, &> is nearly constant, it follows that the

acceleration of x is approximately proportional to x. Hence
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the motion is simple harmonic, and if T be the period of an

oscillation,

T = 2?r (displacement/acceleration)*

= 2-7T [(MfrZtoy^Vi sin (7 - ^)}]*.

When the machine has two poles, the electromotive force

vectors rotate at the same rate as the rotor, but, when it has

2p poles, they rotate p times faster. In the latter case,

M7*2 Jin V VJjJ.h (I JU ' \" 2 / \

-j-de ^-"></-*)*.

and therefore

"

ex

r

T = 2?r [(MfrZ&yipViV) sin (7

If the rotor make n revolutions per second, CD equals 2?m, and the

uency / equals pn. Hence, we can also write,

T =
(2-TT/p) [(27rMk*Zf)/{ FXF2 sin (7

-
^)}]*.

If Fj and F2 are expressed in volts and Z in ohms, then V-^V^Z
is given in watts. Now one watt is 107

ergs per second, and if

M be measured in kilogrammes and k in metres, Mk2
. 107 will be

numerically equal to Mk2
,
when M is measured in grammes and k

in centimetres. If M, therefore, be measured in kilogrammes and

k in metres, the formula given above will give T in seconds.

For a two phase machine with two separate windings the

formula is

T = (27T/p) [(7rMk*Zf)/{ FjF2 sin (7
-

and for a three phase machine we have

T = (2ir/p) [(27rMk
2

Zf)/{3 V,F2 sin (7
-

where Vl is the voltage in one phase of the generator winding,

and F2 is the counter-electromotive force in one phase of the

motor winding.
If M be measured in pounds and k in feet, then, for machines

with q phases the formula is

T = (0*32/p) [(Mk^fy/lqVtVz sin (7 ^)}]i

We see that, when Vl and F2 are equal, the periodic time of the

swings varies inversely as F2 ,
and therefore inversely as the

excitation. We also see that the frequency varies inversely as

e square root of the moment of inertia of the rotor.

122
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In finding the above formulae we have made the assumption
that the torque depends only on the relative positions of the

rotors of the generator and the motor, and, therefore, that it is

independent of their relative angular velocities. Hence the motion

would be similar to that of an undamped pendulum, and the oscil-

lations once started would continue until the external forces were

altered. The solution, therefore, although it gives us a formula

of practical importance, is only an approximation, and leaves un-

explained many of the troublesome phenomena noticed in every-

day work. To obtain a deeper insight into the practical problem
we must take into account the damping forces, and thus introduce

into our equation of motion a term which is proportional to the

angular velocity of the rotor. We shall make the assumption
that the potential difference between the terminals of the supply
mains always obeys the sine law.

The equation of motion will be of the form

approximately ;
and when b/Mk

2
is small, an approximate solution

of this equation is

= oe
-btwt sin ((c/Mfr)* 1 + a},

where and a are constants depending on the initial conditions.

Hence, if b is positive, the amplitude of the oscillations con-

tinually diminishes and the motion is stable. When, however,

b is negative the motion is unstable. In this case, when once

the oscillations are started they will get greater and greater,

until finally the machine falls out of step, and the cut-outs act.

In order, therefore, to discuss the stability of the motion, we must

find an expression for the damping term. For a full account of

the nature of the motion represented b}
7 linear equations and the

conditions of stability, the student is referred to Chapter VI of

E. J. Routh's Advanced Rigid Dynamics. The discussion of the

motor problem given below is founded on B. Hopkinson's solution.

Let the flux of induction linked with the armature and

B. Hopkin-
the fie^ co^s f a ^wo Ple synchronous motor be

son's method. denoted by A ,
and let

sin cot = & sin cot,
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where N is the number of turns in series on the armature and

tot is the angle which defines the position of a radius of the rotor

at the time t. We neglect, for the present, the armature reaction,

and we assume that the reluctance of the paths of the field flux

is the same in all positions of the armature. We assume,

therefore, that <E> is constant. Now the instantaneous value of

the electromotive force generated in the motor armature is

o><I> cos cot, and thus, with our usual notation, we shall have o><E>

equal to \/2 F2 .

Let R be the resistance of the motor circuit, and Li, where i is

the instantaneous value of the current in the armature, the flux

f induction, round the armature wires and the connecting wires,

hich is not linked with the field coils. We assume that R is

constant, and, in getting an approximate result, we can assume

hat L is constant also. It is to be noted that R includes the

sistance of the connecting mains and L includes their induc-

tance. The equation which determines the steady motion of

the motor is

el
= Ri + L - + -j- (< sin cot),

where e is the instantaneous value of the applied potential

difference. If Vl and F2 be the effective values of the applied

potential difference and of the motor E.M.F. respectively, and if

TT
i/r

is the phase difference between them, we may write the

equation in the form

di
Ri +

L-j-
= ^2 Vl cos (cot -f ^r)

- V2 F2 cos cot,

if we choose the origin of time at the instant when the field flux

linked with the armature is zero. We have seen that for steady

running -v/r
must be less than 7 where tan 7 equals Lco/R.

Solving the equation we get

i = i^ sin cot. -f i2 cos cot,

where i,
=

(V2 VJZ) sin (7
- ^) - <y2 VJZ) sin 7 )

and i,
= <y2 VJZ) cos (7

-
i/r)

-
(^2 VJZ) cos 7 J

.....

and Z = (R
2 + Z2

o>
2
)*.

The component ^ sin cot is wattless with respect to the motor

. and its amplitude ^ may have a positive or negative value.
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For a motor the amplitude iz of the watt component is always

positive.

Let us now suppose that the steady running of the motor is

slightly disturbed. Let ily ia and 3> sin cot become 4 4- a?, ia + y,

and <I> sin (cot 4- f) respectively. We suppose that x, y and are

small quantities, so that we can neglect their squares or products.

The equation for the disturbed motion is

i cos (cot 4- i|r)
= Ri 4- L -T- 4- -y- {<!>

sin (cot + f)}

= R
{(i*! 4- a?) sin o> 4- (4 4- y) cos

cot}

4- Zo> (*i 4- OB) cos o> Zo> (iz 4- y) sin &>

r . ,dx-r dy
4- Z sin cot -j- + L cos cot

-jj

( d\
4- <P cos (o>^ 4- f) w + -^r .

For steady motion a?, T/ and f are all zero, and thus, equating
the coefficients of cos cot on each side of the equation, we get

y2 KiCosy = Mi2
-

Similarly V2 Fa sin ^ = Ri^ Lcoiz .

Solving these equations for ^ and i2 , and noting that o><!> equals

\/2F2 ,
we get the equations (a) given above. Equating the

coefficients of cos cot on each side of the equation for the disturbed

motion, we get

- + Lcox +% + <1> cos f = 0.
Oft CcC

c&c / c\
Similarly, L

-j-
Lcoy + Rx O f w +

-^ j
sin f = 0.

Since f is a small angle, we may write 1 and f for cosf and

sin f respectively. In practice also, dg/dt is small compared with

co, and thus we may write co for o> 4- dg/dt. Hence the above

equations become

and ~

+ 3> = ............... (1),

dr
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Let g be the instantaneous value of the accelerating torque.

Then, writing 6 for cot + f, we get, by equating the two expressions

for the power given to the rotor,

dO . d ,

Thus </
= ;-(<I>sm<9)du

=
{(i, + x) sin tot 4- (ia + y) cos cot]

<f> cos ( + f)

i + a?) (sin (2o> + )
- sin fj

i + y) (cos (2o> + (?) + cos f},

Rd

since f is small, we may write

Sr = i*l; + i$(y-ft)
+ periodic terms of frequency CO/TT

+ small quantities.

Now, when the motion is steady, y and f are zero, and thus <I>?'2/2

is a measure of the constant resisting torque, and (
<I)/2) (y fi,) is

the torque which accelerates the rotor. If Mk2 be the moment of

inertia of the rotor, we have, therefore,

(3).

The solution of the equations (1), (2) and (3) will approximately
determine the motion when disturbed. To solve these equations,

let us suppose that

x = A&*, y = Bemt
,

and % = Cemt
,

where A, B and C are constants. Substituting these values

of x, y and f in (1), (2), and (3), and dividing out the exponential

term, we have

LtoA + (Lm + R)B+ <&mC = 0,

(Lm + R)A- LcoB - c*C = 0,

- 3>B + (<E>ij + 2Mk*m2

) 0=0.

Eliminating A }
B and C from these equations, we have

Leo, Lm + R,

Lm + R, Leo,

0, -<,

0.
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Expanding and simplifying, this reduces to

or am*+bms + cm?+dm + e = Q ............... (5),

where a = 2Mk*L*,

b = 4>Mk*LR,

c = 2Mk*Z* + Z<D (< + Li,),

and e = Z$>2
&)

2 +^Z 2
,

where Z2 = R2 + LW ;

and thus, by equations (a) given above,

c = 2Mk*Z* + (2F2L/^
2
o>

2

) { V, R* + F^Zo, sin (7
-

d = (2RV2/ZW) {
F2 (R

2 - L2
co

2

) + 2 F^Ltw sin (7
-

and e = (2/o>) Fx F2^ sin (7
-

-^).

An inspection of the constants will show that a, 6, c and e are

always positive, since in the cases we are considering i/r
is less

than 7. We also see that d must necessarily be positive if R be

greater than L<a.

Before rinding the general criterion for the stability of the

motion, it will be instructive to consider the special
The stability . -, .

, A * .. /WN , 11-1
of the motion cases in which the equation (o) can be solved easily.

shall first consider the special case when R
is negligible. Putting R equal to zero in equa-

tion (4), so that Z= Lco and 7 = ?r/2, we have

L(^ + 2M&2w2
) (o>

2 +m2

) + <I>
2
(o>

2 + m2
)
= 0.

The roots of this equation are

+ a)V~l and ra2 V-l,

where m2
2 = O (3> + Li^/^Mk^L) = ( V,F2 cos ^)/(MkWL).

The values of x and y in this case are

X = A! COS (cot + j) + J-2 COS (m^t + Oa)

and y Bl cos (o>^ + ft) + 52 cos (m2 t + ft),

where Jl^ alf ... are constants. We see, therefore, since

i = (ij + a?) sin CD^ + (^'2 + 2/)
cos cot,
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that the components of the current when the motion is disturbed

have frequencies CO/ZTT, CO/TT, (co + 7n2)/27T and (co ms)/29T respec-

tively. Now, in practice, ra2 is much smaller than o>, so that in

the time that sin cot takes to go through all its values, sinm2 and

cos m.2 t will have altered by a very small amount only. Assuming
that sinm2 t and cosra2 are constant during the time ZTT/CO, we

find that the effective value A of the current is given by
2 = z + i z cos m2 + 2 + 22 cos

+ 1A2 cos2
(rn^t + 2) + i#2

2 cos2

where (7
2
is a constant.

Thus A'2
,
and therefore also A, goes through all its values in

le time 27r/ra2 . Hence when the resistances of the armature

id connecting mains of a synchronous motor are negligible, we

je that the variations of the reading of the ammeter have a

?riod given by
2vr {(Mk*Ltf)/( V,V2 cos i|r)}*.

In practice, when the steady running of a synchronous motor

disturbed by a sudden variation in the resisting or the driving

)rque, the ammeter pointer sometimes gives a periodic series

of readings the period of which may be a few seconds. It is

found that, when R is negligible, the square of this periodic time

is approximately directly proportional to the moment of inertia

of the rotor and inversely proportional to its excitation, and this

is in agreement with the formula given above. It is to be noticed,

however, that, in addition to the components of the current of

slow period which are set up by the disturbance, there may be

also components having a period approximately equal to the period

of the applied potential difference. The pointer of the motor

ammeter cannot follow these rapid variations of the current, and

so their effect is merely to increase the ammeter reading.

When we neglect the resistance R of the motor armature and

the leads, the solution obtained shows that, once oscillations are

set up about the position of steady running, the amplitude of

these oscillations remains constant, and there is no cause tending
either to increase or diminish them. In order to show how oscil-

lations are damped out, let us consider the case when there is no

magnetic leakage, that is, when L is zero.
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Putting L equal to zero in equation (4), we find that

R {^i, + 2Mk*m?} + <l>
2m = 0.

Therefore

m = -

Thus, if SMtfR^i-L is greater than <>3
,
oscillations of the ammeter

pointer will ensue when the steady running is disturbed, the

successive amplitudes of the swings, however, will diminish in

geometrical progression. The greater the value of ^faM&R, the

more effective will be the damping. Hence the damping effect

increases with O, but diminishes if the moment of inertia of the

rotor or the resistance of the armature be increased. If 8Mk2Rz
i+

is less than 4>3
,
there will be no oscillations. We see, therefore,

that when L is negligible the running is stable.

We shall now consider the general case. The four roots of

equation (5) may be real, or two may be real and two
General case. .

^
1

J
_ .

imaginary, or the whole four may be imaginary. It

has to be remembered that imaginary roots occur in pairs. If

p 4- n V 1 is a root of the equation, p n V 1 is also a root. The

term in the solutions of the differential equations corresponding
to this pair of imaginary roots is Aept

cos(nt + a), where A and a

are constants. If p is positive we see that the amplitude of the

swings is increasing, and this corresponds to an unstable oscilla-

tion. If p is negative the oscillation is diminishing and the

oscillation represented by this term is stable. Similarly we can

show that, for stable motion, equation (5) must have no real

positive root, as this would introduce a term in our solutions

which would increase with the time. We conclude, therefore,

that in order that the running of the synchronous motor be stable

the real roots and the real parts of the complex roots of equa-
tion (5) must be negative.

In order to find the required criterion we shall first, by
Routh's method, find the products of the pairs of

t

P
he pairs of

f

the
a11 the roots of equation (5). Writing- x y for m

roots of a {u the equation, so that x + y is one root, x y is
biquadratic.

' 9

another root and x is therefore the arithmetic mean
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between two roots, we get

Thus aif + (Qax
2 + Sbx + c) f 4- ax4 + foe

3 + ex2 + <&e + e = 0,

and (4a# + 6) ;y
3 + (4a^ + 36#2 + 2c# + d) y = 0.

Rejecting the solution, y equal to zero, and eliminating y between

the two equations, we get

64aV 4- . . . + bed - ad1 - eb* = 0.

Now each value of x is the arithmetic mean between two values

of ra, and thus the product of the roots of this sextic equation

=
<j4 ( 7^i + mO (mi + m*) (mi + m*) (m2 + w*s) (wa + m4) (r?i3 + wi4)

=
(6ccZ

- ad2 -
eb*)/(64a*).

Thus, if we denote bed - ad2
eb'

2

by X, the product of the pairs

of roots of (5) will be X/a?.

Let us suppose first of all that the biquadratic has two pairs

of imaginary roots p l % V 1 and p2 n^ V 1. Then, by con-

sidering the sum of the roots of (5), we have

2 (pl + p2)
= b/a = a, negative quantity,

and

X/a* = 4Plp2 {(Pl + p.2)
2 + (n, + n,Y] {(Pl + pj> + (n,

- n2)
2

).

Since, for stability, p l and p2 must both be negative, and their sum

is always negative, so that both cannot be positive, we see that

the criterion in this case is that X must be positive. This is

also the criterion when pt equals p2 .

Let us now suppose that two of the roots are real and two

imaginary. Writing n 2

' V 1 for n2 in the preceding paragraph,

we see that the roots are now p L n^ V 1 and pz + n^. Thus,

we have

and, by equation (5), the product of the roots is given by

As before, we see that pt and p2 are both negative when X is posi-

tive, and since e/a is positive, pz is numerically greater than w2';

and thus the two real roots are both negative. The criterion for
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stability in this case also is that X must be positive. Finally,

when all the roots are real, none of them can be positive when

a, b, c, d and e are positive. In our equation a, 6, c and e are

necessarily positive. If d be zero or negative, X is negative, and

thus we see that when X is positive d must be positive, and the

real roots are all negative.

The criterion for the stability of the running of the syn-

The criterion chronous motor is therefore that bed ad2 ebz must
for stability. ^6 greater than zero. Substituting for the coefficients

their values, this criterion becomes

<I> (3> + 2X1*0 + (*Mk*IL) (E
2 - Z2

o>
2

) > 0.

This inequality may be written in the form

E2 > Z2
o)

2 - 2ZVl VJJ<* sin (7
-
^)/(L V* + 2Mk*. ZW).

Hence, if R is greater than Leo, the motion is stable, since

sin (7 -\Jr)
is positive.

In the particular case when X is zero the sum of one pair of

the roots of equation (5) must be zero. Hence it easily follows

that these roots must be + Vrf/6 V 1, and the other roots, if

real, are negative, and, if imaginary, they have their real parts

negative. Thus the equilibrium in this case is neutral for one

type of free oscillations and is stable for other displacements.

The sum of the squares of the roots of equation (5) is, by
Newton's theorem, 62

/a
2

2c/a. If this expression be negative,

some of the roots of the equation must be imaginary. We see,

therefore, that when 2ac is greater than 62 we must have at least

one pair of imaginary roots, and these correspond to stable or

unstable oscillations. This condition may be written

Mk* (LW -
R*) + (VJj/ZW) [V2R* + ViZLa sin (7

-
^)} > 0.

Heace, if Lev is greater than R, which is generally the case in

practice, there will be at least one type of free oscillations set up.

From the criterion for stability we see that these oscillations will

be, in general, unstable in the ideal case we are considering.

Since the period of the phase swing is very long compared

The eriodof
w^ t^ie P6 ^ ^ tne applied potential difference,

the phase we shall consider the case when n/a> is a small
swing.

_

quantity ; p n V 1 being a pair of the roots of
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the biquadratic (5). We shall assume that p is a very small

quantity, otherwise the swings would be damped out or would

increase so rapidly that the phase swing would not be a notice-

able phenomenon. We shall also assume that a(p + n*</ I)
4
,

which equals 2Mk*L2

(p + n V I)
4
, may be put equal to zero in

equation (5).

Substituting p + n V 1 for m in equation (5), and noting that,

on our assumptions, we may write

a(p+n V^l)
4= 0, 6 (p+n V^l)

3 = - bn* V^l,

c(p+n V 1)
2= 2cpn V 1 en2

,
and d(p-\-n V 1) =dp+dn^ 1,

we get, by equating the real terms in the resulting equation

to zero,

en2 = dp + e

= e ................................. (6),

approximately, since, in practice, dp is small compared with e.

Similarly, by equating the coefficient of V- 1 to zero, we get

2cp = bn2 -d ........................... (7).

Neglecting the small terms in the value of c in (6), we can write

c = 2M&Z* and hence we find that

2M&ZW =
(2/o>) Vl V,Z sin (7

-
^),

and thus T = ZTT [(Mk*Za>}/{ V, V, sin (7 -

which agrees with the result given on p. 179.

Similarly from (7) we find that

approximately.

We see that, if R is greater than La), p is negative and so the

motion is stable, but if R is less than Leo, which is the usual case

in practice, the motion is unstable. In the latter case, the ampli-

tude of the phase swing begins to increase according to the law ept.

On the given assumptions, therefore, R must be greater than Lay

if the running is to be steady. In other words, 7 must be less than

45 for steady running. In this case, the smaller the moment

of inertia of the rotor, and the greater the excitation of the field,

the more effective will be the damping.
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If we keep the excitation of the field constant, then Vz/o> t

which equals <&/*/%, will also be constant, and thus, for all values

of the frequency, we have

and hence

If, therefore, Leo is greater than R but less than R*J3, we see

that p, which in this case we may call the coefficient of instability,

increases as the frequency increases. If, however, Lw is greater

than R \/3, the coefficient of instability diminishes as the frequency

is increased. Let us now suppose that R is greater than Lay, so

that' p is negative. Then, the greater the numerical value of p the

smaller will be the value of e~pt for a given value of t, and the more

rapidly will the free oscillations of long period be damped out.

Since, when R is greater than La>, dp/dw is always positive, and p
is negative, it follows that, 'in this case, increasing the frequency

diminishes the numerical value of p, and therefore the damping.
It must be noted that we have neglected the damping effect

produced by the resistance of the air. In addition, since we have

made the assumption that the field of the motor is unaffected by
the oscillations of the armature current, we have neglected the

damping effects caused by the eddy currents induced in the iron

and the copper.

When the pulsations of the current are small, the modification

of the above formulae introduced by the distortion

of the field due to these pulsations can be taken into

account without much difficulty. B. Hopkinson has

considered this case (Proc. Roy. Soc., Vol. 72, p. 235).

He proves that the distortion of the field slightly increases the

instability.

On our assumption we see that, when La) is greater than R
y

slow oscillations are always set up when the motion is disturbed.

They gradually increase in amplitude until finally the machine

falls out of step. Phenomena similar to this are often noticed in

practical working. They may, however, be primarily due to other
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causes. For instance, periodic fluctuations in the driving torque

of the engine of the generator or in the retarding torque due

to the load may synchronise with the electrical forces tending to

maintain the free oscillations, and thus cause the machines to set

up phase swinging. The above theory shows that, when the

running is disturbed, there are electrical forces called into play

which tend to make the machine fall out of step.

In order to prevent phase swinging, Hutin and Leblanc

provided the field magnets with '

amortisseurs/
Amortisseurs. . .

or
'

dampers, which tend to prevent any relative

change between the positions of the magnetic field due to the

ature and the field due to the field magnets. These dampers
metimes consist of heavy copper circuits surrounding the poles,

or of copper rods embedded in the poles and having their ends

joined by copper rings. Since, in polyphase machines, under

normal conditions, both magnetic fields are fixed relatively to

these circuits, no currents will be induced in them. When,

however, phase swinging is set up, the alteration of the mag-
netic flux in these circuits produces a torque which generally

tends to prevent any departure from the normal running.
For polyphase machines running synchronously (see the next

chapter) these dampers are useful, as the magnetic reactions pro-

duced tend to prevent the machines from falling out of step.

Another effect of the dampers is to reduce the potential drop
at the terminals on heavy inductive loads, as they prevent
the armature reaction from appreciably demagnetising the field

magnets.
For single phase machines dampers are not so useful. The

magnetomotive force due to the currents in the armature of a

single phase machine sets up a pulsating magnetic field. This

may be resolved into two magnetic fields gliding in opposite

directions. One of these has no effect on the dampers, when

the running is steady, as it is fixed relatively to them, but, when
the running is disturbed, the currents induced in them by this

component help to damp out the oscillations. The other produces
in the damping coils an alternating current of double the frequency
of the supply current. Owing to the high inductance of the
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damper circuits, the currents induced in them by this field are

rarely large, and the retarding torque due to it, is generally small.

It has been observed in practical work that the humming
noise often made by single phase machines when running is

reduced considerably when damping circuits are used. This is

due to a diminution in the amplitude of the flux variations.

B. Hopkinson, in the paper quoted above, has found an ap-

proximate solution for the disturbed motion of a
The theory
of damping synchronous motor provided with damping coils.

The effect of these coils is generally to increase the

stability of the motion. It is proved that if the period of the phase

swing be decreased, the damping will be increased. For instance,

if the moment of inertia of the flywheel be increased, the regulation

will be improved. The interesting result is also proved that it is

possible to use too much copper in constructing the damping coils.

The ordinary field magnet coils must act to a certain extent

like damping coils. The alternating currents induced in them

tend to prevent sudden variations in the value of the field flux.

If we neglect the cross flux and the leakage, the damping effect is

the same, whether we utilise the extra copper required for the

damping coils in making these coils, or whether we utilise it in

reducing the resistance of the exciting circuit. The latter method

has the incidental advantage of reducing appreciably the excita-

tion losses.

If the exciting circuit had no resistance, there could be no

variation of the induction linked with it, and consequently no

damping effects would ensue. Similarly, if it had infinite re-

sistance, there would be no damping. Hence there must be a

particular value of the time constant of the exciting circuit for

which the damping effects are a maximum.

B. Hopkinson also proves that, in order that the damping
coils may increase the stability of the running, the watt com-

ponent iz of the current, with reference to the back E.M.F. of the

motor, must be greater than a current which is approximately

equal to (oR^jZ
z

. Hence, increasing the load on the motor

may make the running stable; a result which he has verified

experimentally.
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All the above conclusions have been obtained on the sup-

position that the applied potential difference is sine shaped and

that L is a constant. In practice, L may vary by 50 per cent,

for different positions of the rotor. It is sufficient, however, when

making rough calculations in connection with synchronous motors,

to take its mean value. Accurate quantitative results would be

exceedingly difficult to obtain, and would be too complicated for

practical use.

It is to be noticed that t a is positive for a motor and negative
for a generator. B. Hopkinson's method, therefore, can also be

applied to the case of a generator running in parallel with other

Aerators.

j
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THE efficiency of a steam engine or a steam turbine is much

higher when it is running on a heavy load than when
The parallel .

J

running of it is running lightly loaded. It is necessary, there-

fore, for the engineer of a central station to arrange

that his engines never run for long periods on light loads. To

illustrate the importance of this point, let us consider how the

efficiency of a high speed steam engine, for example, varies with

the load. Let W be the number of pounds of steam consumed

by the engine per hour, and let P be the brake horse power

developed. A linear equation of the form

will express very approximately the relation between W and P;

the constants a and b in this equation being different for different

engines. This equation is known as Willans's law, and is true

whether the engine is used with or without a steam condenser.

The constant b is the same in both cases
;
the effect of the con-

denser is merely to diminish the value of a. In a Willans and

Robinson high speed engine, when working without a steam
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condenser, the steam consumed per hour at no load is about a

quarter of that consumed per hour at full load. If w denote the

number of pounds of steam consumed per hour, per brake horse

power developed, we have

w = W/P = b + a/P.

In a Willans and Robinson engine, therefore, if a be the number

of pounds consumed per hour at no load and Pm be the full load

brake horse power, we have, since 3a = bPm ,

w = a(l/P+3/Pm) t

approximately. Thus, at one-fifth full load, for example, the value

of w would be twice as great as at full load. As the coal consumed

is roughly proportional to the number of pounds of steam that leave

the boiler, we see that the coal bill for the units generated at one-

fifth load will be about twice as great as the coal bill for an equal
number of units generated at full load. In addition the efficiency

of the alternators is less at a fifth load than at full load. For

economical working, therefore, it is essential never to have the

machines running for long periods on light loads.

In central stations, each engine is generally coupled to its own
alternator so as to avoid the losses consequent on the use of

gearing. It would not conduce to economical working to have

each generator supplying a set of mains connected with no

other generator, as the pressure between every pair of supply
mains has always to be maintained, whatever may be the load,

and thus we should often have several engines and alternators

running on light loads. All the alternators, therefore, are con-

nected in parallel to two mains called
' bus bars

'

with which the

mains supplying the transformers are also connected, and care is

taken to ensure that the number of machines running at any time

is only sufficient to carry the load.

We saw in Chapter IV that, if two alternators have the same

frequency, and if they are connected in series, the running is

stable when the phase difference between the armature electro-

motive forces is nearly 180. In this case, the terminals which

are connected with the same bus bar are practically at the same

potential, and so the machines are working in parallel so far as

a circuit joining the two bus bars is concerned. Hence, when

132
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two alternators are connected in this manner, the stable position
of running on no load occurs when their armature E.M.F/S are nearly
in opposition round the circuit formed by the armatures, arid

consequently when both the E.M.F.'s are acting nearly in phase
with one another, and tending to produce a potential difference

between the bus bars. To a first approximation, therefore, the

electric forces tend to make two alternators run in parallel when

they are connected with the bus bars, provided that the effective

values of their electromotive forces lie between certain limits.

When fuses or magnetic circuit breakers are placed in the

leads connecting the terminals of an alternator with

breakers in tfte bus bars, then, if the device in one only of the

running connecting leads acts, the insulation of the machine

may be subjected to excessive stresses. The electrical

forces no longer constrain the alternator to run in parallel with

the others, and so it will sometimes be running in series with

them. In this case, the effective value of the P.D. between the

terminals of the circuit-breaking device will have double its

normal value. The P.D., also, between the armature of the

machine and the field poles may have nearly double its working

value, and this may start an arc between the armature windings
and the poles which may ruin the machine. For this reason,

therefore, in practical work, fuses and 'excess current circuit

breakers
'

are now rarely placed in the circuits of the connecting

leads. Instead of these,
'

discriminating
'

magnetic devices, or

as they are frequently called, 'reverse current' circuit breakers

are employed. A device of this nature acts whenever the phase
difference a between the alternating current through it and

the P.D. between the bus bars exceeds a certain value. These

devices must act not only with '

reverse currents
'

but also when

the circuit for the exciting current for the field of the generator is

accidentally broken. In this case a large leading current will

flow in the armature of the machine in order to produce the

necessary excitation of the field, and, if this occur at a period of

heavy load, the armature may be burnt out. In practice, there-

fore, the value of the phase difference a must be chosen so that

the device acts in both these cases.
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Iii order to simplify the theory of parallel running we shall

assume that the electromotive force and current
The theory .

of parallel waves are sine shaped, so that the current vector
: ~ :" the same plane as the electromotive forceis in the same plane as

vectors, and we shall also assume that the effective values of the

electromotive force of each machine are the same. We shall sup-

pose that the two machines are similar and equal, and that the

load is constant.

If i^ and i2 be the instantaneous values of the currents in the

arm at tires, we can always write

h =
2 (*i + *2> 4- i (ii

-
*'a),

and iz = ^ (^ + i2) -J (^ i2).

Hence, we may consider that each machine is supplying a current

(*i + 4)/2 to an external circuit, and that there is a synchronising
current (^ 1'2)/2 in the armatures. Suppose that the load is

Fig. 96. Vector diagram for two alternators in parallel.

inductive and that /3 is the phase difference between the external

current and the external potential difference. Let (Fig. 96) OC
and OA represent the two armature electromotive forces, each of

which has an effective value V. Let B be the middle point of AC,
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then, as in Fig. 81, p. 138, BA or BC will represent the voltage V
in the external circuit. Let OK represent the synchronising

current, and let OD and OE be each equal to half the current C
in the external circuit. If we draw OA' parallel to BA, the angle

A'OD will be equal to ft. Let the angles BOG and BOA be each

equal to 0/2, and let Wl and W2 be the loads on the machines,

the vector electromotive forces of which are OC and OA respec-

tively. Then, since the electric power generated is the product of

the apparent watts multiplied by the cosine of the phase differ-

ence, we get from Fig. 96

W, = V. i C . cos EOC + V. A . cos KOC,

where A is the effective value of the synchronising current. Now
A is 2 . OB/Z, where Z is the impedance of the circuit of the

armatures. The angle BOK is the angle of lag of the synchro-

nising current behind the electromotive force driving it. We
shall denote this angle by 7. Hence, noticing that 2 . OB is

2 V cos ((9/2), we get

W, = (1/2)F0 cos (ft + 7T/2
-

0/2) + 2(VZ

/Z) cos (0/2) cos ((9/2
-

7)

=
(1/2) VG sin ((9/2 -/3) + (F2

/^) {cos 7 + cos (0 -7)}.

Similarly

TT2 = (1/2) VC sin ((9/2 + ft) + ( V*/Z) {cos 7 + cos (0 + 7)),

where W2 is the power generated by the second machine. It is

easy to see that when C is zero these formulae agree with the

formulae for a generator coupled to a synchronous motor given
in Chapter IV, p. 143.

The difference between the loads on the two machines is

given by the equation,

W1-Wa
= -VC cos (0/2) sin ft + (2V2

/Z) sin sin 7.

If equal TT, that is, if the machines are in phase with regard

to the external circuit, the right-hand side of this equation equals

zero, and the load on one machine equals that on the other for all

values of the external load.

In practice, is generally less than TT. Let us suppose that

is TT - any where as is a small angle. Substituting in the above

equation, we find that

W1
- W.2

= - VC cos {(TT
-

a?)/2} sin ft + 2 ( V*/Z) sin (TT
-

x) sin 7
= F{(2Fsiny)/Z-((7sin)/2} x,



VIl] INDUCTIVE LOADS 199

since we may write oc for sin x, and
a?/

2 for sin (#/2), when x is

small. If the external circuit were non-inductive, ft would be

zero, and W-^ W2 would be independent of the load, since in this

case

It follows that, when TT x diminishes, that is, when x increases,

the difference between the load on the leading and lagging

machine increases and this tends to good regulation.

From the above formula for Wl W2 it follows that increasing

the value of the electromotive force V greatly iii-

the electric creases the accelerating and braking effects called

into play by the mutual electric forces generated

round the circuit of the armatures. Hence, on the assumptions
we are now making, and neglecting the question of the stability

of the free oscillations, we see that the greater the excitation

the better is the electric regulation of the parallel running of

the machines.

When the shapes of the electromotive force waves of the twc*

Effects of
machines are different they can never be in exact

wave shape. opposition in phase, and so, as we have seen on

p. 139, the bus bar voltage is less than the voltage of either machine,

and the electromotive force V round the circuit of the armatures

will be large. If the wave shapes are very unlike one another,

the synchronising current may be so large that parallel running
is impossible.

Since, on our assumptions, we have

inductive W,-Wt
= F{(2Fsin 7)/^-(C'sin /8)/2} ;E

,

we see that if ((7sin/3)/2 equals (2Fsin7)/^ there is

no electric regulating effect, and if (C sin @)/2 is greater than this

value, the machines tend to run in series. When the machines,

therefore, are working on a heavy inductive load, that is, when C
and /3 are large, the machines will have a tendency to fall out of

step.
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If, on the other hand, the external load acts like a condenser,

condenser ft w^l be negative, and hence the regulating effect

loads - will be better than for a non-inductive circuit. In

this case also, as the current increases, the retarding and accele-

rating effects will increase, provided that C sin ft increases.

In the above investigation we have not considered the effects

Armature ^ arm&ture reaction on the parallel running of the
reaction. machines. The magnetomotive force of the cur-

rents in the armature when they lag behind the armature electro-

motive force tends to demagnetise the field magnets. Hence the

electromotive forces generated are reduced, and this tends to bad

regulation. Similarly, with leading currents the armature reaction

tends to increase the electromotive forces generated, and thus

improves the running of the machines.

We should expect, therefore, when alternators are working in

parallel on a heavy inductive load, that the running would be un-

steady and that breakdowns would be frequent. The stability could

be improved by the use of an over-excited synchronous motor (a

rotary condenser) connected between the bus bars so as to raise

the power factor of the circuit. A battery of static condensers

would have a similar effect when each is connected in parallel

across the circuit. If the potential difference be too high for

the condensers they could be connected in parallel groups across

the mains or a transformer might be used to reduce the pressure,

the condensers being connected across the low pressure terminals.

We shall now find a formula for the free oscillation of long

period or
'

phase swing
'

which practically always
Free oscilla- J

tion of long occurs if an alternator is
'

paralleled
'

slightly out of

step, that is, if it is switched on to the bus bars at

an instant when its electromotive force is not exactly in phase
with the potential difference between the bars. In order to

simplify the problem we shall .assume that, initially, there is only

one machine connected with the bars. We shall also assume

that the oscillation is so slow that we may use vector diagrams.

We assume, therefore, that the periodic time of the free oscillation

is great compared with that of the alternating current. In ap-
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proximate working this assumption may safely be made. We
shall also neglect all the damping forces.

Let gj and gz

'

be the instantaneous values of the torques

applied to the first and second machines respectively, and let

g-i'
and gs

"
be the torques required to overcome the mechanical

retarding forces. Then, the torques employed in developing
electrical energy will be g\ g\ and g.2

'

g respectively. We
shall make the assumption that these applied torques are constant.

We shall suppose that each machine has the same number, 2p, of

poles, so that the mean angular velocities of the rotors are the

same.

By the fundamental equations we have, when the running is

steady,

gl0> = \VG sin (0 /2 -0) + (V*jZ) {cos 7 + cos (0
-

7)),

and g,w = VC sin (0 /2 + ) + ( V*/Z) {cos 7 + cos (0 + 7)} ,

where gl and g2 are equal to #/ g" and g% g2

"
respectively,

and is the phase difference between the vectors representing
the electromotive forces.

Let us now suppose that, owing to a momentary variation of

the driving torque or the load, becomes + # at a particular

instant, then since o> remains practically constant, we get the

following equations for the differences A0r, and A^2 between the

new and the old values of the torque

wA^ = VC cos (0 /2 + a?/4
-
0) sin (a?/4)

- 2 (V*/Z) sin (0
- 7 + a?/2) sin (ar/2),

and o>A#.2
= VC cos (0 /2 + a?/4 + 0) sin (a?/4)

- 2 ( V*/Z) sin^(0 + 7 + a?/2) sin (a/2).

Now, when is + a?, let us suppose that a given radius of

the rotor of the first machine makes an angle 61 with the hori-

zontal, and let also a radius of the rotor of the second machine

make an angle 2 with it. Then, the radius of the second machine

may be chosen, so that l
-

2 is equal to 0/p, where or + x is

the angle between the vectors of the electromotive forces. Let

M-^k-f be the moment of inertia of the first machine together with

the moment of inertia of the shaft and the flywheel of the engine to

hich it is coupled. Let M^ be the corresponding moment of
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inertia for the second machine. Then, since the moment of inertia

of a rotating body multiplied by its angular acceleration equals
the moment of the forces about the axis of the rotor, we have

and M2k2
z -~ = A#2 .

Noting that p(&i ft) equals ft + #, we get

dt2 M^ M2k2
2

'

If x be small we can write x for sin x, and hence we find that

d-x _

where

yu,
= (pF/4a>) [{(4sV/Z) sin (ft

-
7)
- (7 cos (ft/2

- &)}/&*
-
{(4VIZ) sin (ft + 7)

- C cos (ft/2 + /3)}/ 2̂&2
2

].

If fi be positive, the motion is therefore simple harmonic, and the

period is 27T/V//,.

If we suppose that M^kf is very large compared with M2k2
~

and that C is zero, we have

and putting TT ^ for ft, we get

T=%TT [(MtkfZ&)/(pV* sin (7

This agrees with the formula for the time of the slow free oscilla-

tion of a synchronous motor given on p. 179. It has been proved

by several experimenters that the period of the phase swing
varies directly as the square root of the moment of inertia M2 k.2

'2

and inversely as the excitation. Now the excitation is propor-

tional to F, and thus the formula has been partially verified

experimentally.

Let us suppose that M^k* equals M2k2 . The formula for the

period of the phase swing is now given by

T = 27T [{(ZMJcf&yp F}/{4 ( VfZ) cos ^ sin 7
- C sin /3 cos

On a non-inductive load, /3 is zero, and thus

T= 2-7T r(JfiA?1

a
Zfi))/(2oF

a cos ^ sin
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Hence the time of swing is a minimum when
-xjr

is zero, and in-

creases as
-\/r increases, that is, as the phase difference between the

electromotive force vectors of the two machines diminishes.

The time of swing is practically independent of /3 in most

cases, for 4 ( VjZ) cos
i/r

sin 7 is generally much greater than

(7 sin /3 cos (i/r/2).
It makes, therefore, little difference to the

period of the phase swing whether the load acts like a condenser

or a choking coil, provided that the armature reaction of the

alternators is negligible.

When phase swinging is set up between two machines, we have

seen that to a first approximation the motion is simple harmonic.

It follows, therefore, that, when the phase difference between the

electromotive force vectors of the two machines is a maximum or

a minimum, their rotors are moving with the same angular

velocity, and when they pass through the positions which they

have when the running is stable, the difference between their

angular velocities is a maximum.

In practice, the problems connected with parallel running are

Practical
much more complicated than those considered above.

running. ^ot on}v has armature reaction to be taken into ac-

count, but we have also to consider the stability of the motion.

We saw, in Chapter VI, that when the steady motion of a syn-

chronous motor is disturbed, then, in some cases, the ensuing
motion is unstable. Similarly when an alternator is running in

parallel with other alternators the steady motion may be unstable.

Let us suppose that we have several alternators connected

with the bus bars and working in parallel. If we assume that the

potential difference between the bars is sine shaped and is practi-

cally undisturbed by oscillations of the current in the circuit of one

of the machines, then the analytical work given in the preceding

chapter applies, the only difference being that the watt component
i2 of the current is negative. We see, therefore, that it is possible

for two types of free oscillations of different periods to be set up
in the circuit of each alternator. Thus, if there are n alternators,

we may have 2n principal free oscillations, and these oscillations

may all be taking place at the same time. As Leo is generally

greater than R for each alternator circuit, we see that, on the
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usual assumptions, there must be at least n types of free oscilla-

tions. If the damping forces due to armature reaction and eddy
currents were negligible the running would be inherently unstable.

We saw in the last chapter that, so far as the free oscillations

are concerned, they can be damped effectively by means of suitably

chosen damping coils. We saw also that, in some cases, the same

effect could be produced by diminishing the resistance of the

exciting coils of the field magnets. In general the effect of the

eddy currents generated when the steady motion is disturbed is

to damp out the ensuing disturbances.

We can see, also, that machines which produce electromotive

force waves differing widely in shape are not well adapted for

running in parallel as the synchronising currents are large. Even

when machines giving a sine shaped wave of E.M.F. on open
circuit are used, the synchronising currents are large when the

machines are very unequally loaded, as the shapes of their E.M.F.

waves are then different. The damping effect of the inductances

of the armatures of the alternators on the high harmonics in the

current disturbances will however be considerable, and thus the

effect of the fundamental harmonic will be the most important.

In what precedes we have merely considered the free oscillations

Forced
tnat are se^ UP wnen the steady running is disturbed,

oscillations. When the disturbing force is periodic we get forced

oscillations as well. For example, when an alternator is driven

by a single crank reciprocating engine, the fluctuations in the

driving torque are large, and this torque vanishes at least twice

in every revolution. Even in an engine with three cranks, the

torque is not absolutely steady, and forced oscillations will be

set up in the running of the alternator. These oscillations, in

practice, are often sufficiently large to produce current oscillations

which can be observed by noting the continual oscillations of the

pointer of the machine ammeter. As the variations of the torque

give rise to free oscillations also, we should expect that the

ammeter pointer would vibrate in an irregular manner, but that

in general it would go through all its values during the time the

rotor takes to make a complete revolution, and when the forced

oscillations are appreciable, this is found to be the case.
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The magnitudes of the forced oscillations set up, when the

alternators are acted on by periodic disturbing forces,

mechanical depend not only on the magnitude of the amplitudes

of the disturbing forces but also, in a very special

manner, on the periodic times of these forces. If the period of

the disturbing force is nearly the same as that of one of the free

oscillations, the resulting forced oscillation will be very large. In

particular, when the period of the disturbing force equals the

period of a free oscillation, electro-mechanical resonance ensues,

and, unless the damping be very powerful, the oscillations

will increase until the large currents cause the circuit breakers

to act or the machines have to be switched out of circuit

owing to the large periodic rushes of current through their

armatures.

Many dynamical illustrations can be given of this kind of

resonance. A heavy pendulum, for instance, can be set into

violent oscillation by a series of little pushes, provided that they

are properly timed. Similarly the '

rolling
'

of ships at sea is

explained. When the period of the waves synchronises with the

period of the free oscillation of the ship, it may roll very heavily

even although the height of the waves be small.

When the period of the disturbing force is not approximately

equal to any of the periods of the free oscillations the effect

produced is practically always small. If the period of the dis-

turbing force be much smaller than the period of the quickest of

the free oscillations, the resulting disturbance will, in general, be

quite negligible. This is illustrated by noting the apparently

absolutely steady deflections of the pointers attached to the

moveable coils of several types of electric measuring instruments

when traversed by alternating currents, even when the frequency
of these currents is very low.

In practice, therefore, we have to arrange that none of the

periods of the free oscillations is approximately equal to the

period of any of the disturbing forces. In modern stations each

alternator is directly coupled to a steam-engine. The disturbing

forces are generally due to the variations in the driving torque,

but in some cases they are due to the oscillations of the governors
of the steam-engines. It is well known (see Routh's Advanced
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Rigid Dynamics, p. 73) that the oscillations of the balls in a

Watt's governor are unstable. For this reason various damping
devices are sometimes employed in connection with steam-engine

governors. If these devices are inefficient, periodic fluctuations

will be set up. When the balls are at their greatest distance

apart the lever acting on the throttle valve will diminish or cut

off the supply of steam, and when they are at their minimum
distance the valve may be fully opened. These pulsations will

therefore produce a periodic fluctuation of the pushing force on

the piston, and therefore also a fluctuation in the driving torque.

This will give rise to a forced oscillation of the current in the

armature. If the period and real exponential of the disturbing

force in this case are nearly the same as the period and real

exponential of a free vibration of the current, a very large forced

oscillation may be set up. The remedy for the resonance due to

this cause is to use efficient dampers for the governors. They

may be fitted, for example, with a dash pot, that is, a loosely

fitting piston working in a small closed cylinder containing

air. The piston, whilst offering practically no resistance to

slow changes of its position, offers a great resistance to sudden

changes.

If the periodic times of the disturbing forces are known, care

must be taken that none of them equals the period of any of the

free oscillations. Now the period of the free oscillations of an

alternator can be varied by increasing or diminishing the moment

of inertia of the flywheel, and this would be the best remedy to

apply in practice. The periods of the free oscillations can also

be increased or diminished by varying the excitation of the

alternator.

In designing the shaft necessary to couple an electric generator

The stresses
* *ts Prime mover, the stresses which it will have

on the shafts to withstand in actual working must be studied
coupling
dynamos carefully. Heavy shafts, quite free from flaws, have

fractured when rotating at moderate speeds although

they were only transmitting a small fraction of the working torque
for which they were designed. When the shaft has been replaced

by a new one of the same dimensions, it has been noticed, on
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several occasions, that it fractures at the same critical speed as

the shaft which it replaced. As the forces applied to the shaft

are small compared with the static forces which it can safely

withstand, the fracture may possibly be due to mechanical reson-

ance. One of the applied periodic forces, due, for instance, to

the pulsations of the driving torque of the engine or to the

pulsations of the resisting torque of the load, may have the same

period as one of the free torsional oscillations of the rotating

shaft. It is of importance, therefore, to be able to calculate the

frequency of these free torsional oscillations.

If we have a thin rod of circular cross section clamped at one

end and if the length of the free part of the rod be I centimetres,

the frequencies of the free torsional oscillations are given by

{(2m + l)/4/} V/A/p, where m is zero or a positive integer, /z,
the

rigidity, and p the density of the metal forming the shaft. For

steel V/A//O is about 330,000, and for wrought iron it is not much

smaller. It will be seen, therefore, that the frequency of these

oscillations is very high. In practice, however, when calculating

the free torsional oscillations, we must consider the shaft, rotor,

crank arms and flywheel as forming a simple body, and this makes

the exact calculation of the periods of these oscillations very
difficult. There are apparently, in this case, only a limited

number of possible periods, and the frequency need not be high.

The curve showing the driving torque of the engine is generally

very different from a sine curve, and so the periodic torque may
be supposed to be the resultant of a series of periodic torques

some of which have appreciable amplitudes. The frequencies of

these harmonic torques are multiples of n where n is the number

of the revolutions of the crank per second. If the field of the

alternator be excited as the rotor is driven up to the normal

speed, then, if the machine be an inductor machine or if the

number of slots in the armature be few, an appreciable pulsating

torque due to the eddy current and hysteresis losses caused by
the variations of the reluctance in the path of the field flux will

be produced. It will be seen, therefore, that there are many
forces of different frequencies applied to the shaft, and it is highly

probable that, when the rotor is being run up to speed, a com-

ponent of the applied forces of appreciable amplitude will pass
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through synchronism with a free torsional vibration, and so there

will be a risk of the shaft being fractured. If the amplitude of

the applied resonating forces be sufficiently great to overcome the

damping due to the friction of the bearings, etc., the risk will be

serious. In this connection, we must remember that alternating
stresses of high frequency produce metallic fatigue in the shaft,

and so, for this reason alone, they are more likely to cause it to

fracture than alternating stresses of the same amplitude but of

a lower frequency.

Torsional vibrations are not the only type of vibrations which

can be set up in a shaft with a straight axis fixed in direction.

When torsional vibrations are started in a shaft at rest, we have

one or more sections of the shaft absolutely at rest, whilst the

other sections are in motion. When the shaft is rotating one or

more sections of the shaft are moving with uniform angular

velocity whilst the other sections move relatively to them. In a

second type of vibrations (ortho-radial) the angular velocities of

all points equidistant from the axis are the same. Any line in

the shaft parallel to the axis always remains a straight line, but

its angular velocity varies in a periodic manner. If the axis of a

circular cylinder were fixed we could start a vibration of this type

by applying equal tangential forces to every point on the circum-

ference of the cylinder, and then removing them simultaneously.

In some cases vibrations of this type are more likely to be set

up than torsional vibrations. They have been studied by Chree,

who finds that, in the case of a solid circular cylinder, the fre-

quencies are given by the equation Jz {2?r/a (/>//*)*}
= 0, where f is

the frequency, a the radius of the cross section and J.2 denotes the

Bessel's function of the second order. The three smallest values

of 27r/tt (/>///<)*
which satisfy this equation are approximately

equal to 5'14, 8'42, and 1T6 respectively. Comparing the lowest

frequency f2 of this type of vibration with the lowest frequency J\

of the torsional vibrations, we see that /2//i
=

3'27^/a. In general

3'27 is greater than a, and thus the frequency of the second type

of vibration is usually greater than that of the first type. In the

case, however, of a flywheel considered apart from the shaft the

vibrations of the second type would be less rapid than the tor-

sional vibrations.
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Another possible explanation of the fracture of shafts is that

The whirling
^ ^s ^ lle to

'

whirling.' When the length of the
of shafts. shaft is considerable, this explanation seems the more

probable. The phenomenon of whirling has been investigated

theoretically by Greenhill and Chree, and both theoretically and

experimentally by Dunkerley. The following simple explanation
of the cause of whirling was first given by Chree. Let us con-

sider the case of a thin rod of circular section, firmly clamped at

one end to a shaft which is capable of rotation about its axis.

If we pull the free end slightly to one side and let it go, the rod

will execute a number n of complete vibrations per second; the

time taken by the extremity of the axis of the rod to pass from

one position of maximum amplitude to the next being I/(2ri). If

we now make the rod rotate about its axis as well as vibrate,

it will be found that the time taken by the extremity of the

axis of the rod to pass from one position of maximum amplitude
to the next is greater than l/(2n). We shall call this time half

the period of the transverse vibration of the rod when rotating.

If the velocity of rotation of the rod be increased, the period
of the transverse vibration gets slower and slower until, finally,

when it makes n revolutions per second, whirling ensues. The
transverse vibrations get slower, as the angular velocity increases,

owing to the centrifugal forces acting in the opposite direction

to the elastic stresses tending to restore the rod to its initial

position, and thus the resultant stress is diminished.

Experiments made by the author show that, when the critical

angular velocity is reached, the free end of the rod describes

rapidly widening loops round the axis of rotation of the revolving

clamp, and the rod either fractures near the clamped end or bends

round until it rotates with its free end practically perpendicular
to its initial direction. When a rod whirls, it acts apparently in

much the same way as a piece of fairly stiff rope would act when
rotated under similar conditions. The rope, however, whirls at

a much lower speed.

From the equations for the vibration of thin rotating rods

given by the theory of elasticity, it follows, at once, that

where o> is the actual angular velocity, F the number of vibrations

R. n. 14
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per second where there is no rotation, and / the number of vibra-

tions per second when the angular velocity is co. The condition

for instability is that f is zero, and hence the corresponding value

fl of the angular velocity is given by

Instability arises when the frequency of the tranversal vibra-

tions is nil, as there is then no righting force.

The same reasoning applies when the rod, which we suppose
to be unloaded, is supported by two bearings. If the frequency
of the transverse vibrations when the rod is not rotating be F,

the rod will whirl when the angular velocity is 27rF. Chree has

shown that when a loaded shaft is rotating, the frequency equation,

in many of the cases considered by Dunkerley and himself, is of

the form

where a is approximately constant, and F is the frequency of the

transverse vibrations of the loaded shaft in the absence of rotation.

The whirling velocity 1 is now given by the equation

II2 = (2?rF)
2

/a.

and &>! be simultaneous values off and w, we have

and thus, we find that

D,2 = co 1

2F-2/(F
2 -f1

2

).

Hence, by determining F,fi and col} we can find fl. In order to

check our result it would be advisable to find fl from other

simultaneous values of co and /.

It must be remembered that whirling is a phenomenon of

instability and not of resonance. It is not a case of synchronism

between a free vibration of a system and one of the applied

periodic disturbing forces. When whirling begins the centrifugal

forces overpower the righting forces and the shaft tends to fly

outwards. It is possible, however, that for speeds less than that

at which whirling ensues, we may have equality of period between

the variations in the thrust and pull of the connecting rod of

the reciprocating engine, on the crank pin, and the transverse

vibrations of the rotating shaft. Owing to the rotation, the period
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of these vibrations is diminished, and care must be taken that

the period of none of the component disturbing forces, which

set up transverse vibrations, coincides with this diminished period.

This kind of resonance might produce breaking stresses in the

shaft.

When several alternators connected with the bus bars of a

central station are running in parallel and it is

amachine
g desired to put a new machine in circuit, the pro-

ba'rs

the buS cedure is as follows. The first operation is to run

the machine up to the proper speed and excite the

field magnets until the electromotive force is equal to, or preferably

a little greater than, the voltage between the bus bars. We
then connect some form of synchroniser, several of which are

described below, between the machine and the bus bars so that

we can find when they are in step. When the synchroniser
indicates the proper moment we close the main switch and

gradually increase the driving power of the engine, by adjusting
the governor or otherwise, so as to open wider the throttle or ex-

pansion valve until the engine takes its due share of the load on

the station. Altering the excitation of the field increases or

diminishes the current, and hence we adjust the excitation until

the current is a minimum. The excitation is adjusted by means
of a rheostat in the circuit of the field magnet windings of the

exciter. Altering the excitation makes very little difference in

the load taken by the machine.

In order to tell when the electromotive force of the incoming
machine is exactly in step with the potential differ-

Methods of
, i

synchronis- ence between the bus bars, various devices are

employed. One of them consists of an iron core

transformer with three windings. One of these windings is

connected across the terminals of the machine and another is

connected across the bus bars. When the two applied potential

differences are in phase with respect to the load the magneto-
motive forces acting on the core of the transformer balance one

another. At this instant, there is no electromotive force in the

third coil, and a lamp connected across its terminals is dark.

U 2
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When the potential difference at the terminals of the machine is

in opposition with the potential difference between the mains, the

magnetomotive forces acting on the core of the transformer are in

phase, and hence, the alternating magnetic flux generated produces
an electromotive force in the third coil, and the lamp glows. The

proper moment for switching on is when the lamp is dark. When
the speed of the incoming machine is near its proper value, the

pulsations of the light given out by the lamp can easily be noticed.

When the period of the pulsation is five or six seconds the switch

is closed in the middle of a period of darkness. It is advisable

not to have the lamp bright, when the voltage is a maximum,
as otherwise the eyes get dazzled. It will be found that a dull

red is generally quite sufficient.

In Fig. 97 the connections are given for the two transformer

method of synchronising. In this method the two
Two trans-

.

former transformers have their secondaries connected in

series through a voltmeter. They may be connected

so that the voltmeter has either its maximum or its minimnm

Fig. 97. Method of synchronising with two transformers.
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reading at the proper moment for closing the switch. In practice,

however, it is better to arrange so that the voltmeter has its

maximum reading when the voltages of the two machines are

in phase, as this instant is more definitely indicated by the

instrument.

A special transformer is sometimes used to indicate the mo-

ment when the voltage of the incoming machine is
Phase indi- . . , , T
eating trans- in phase with the voltage across the bus bars. Its

action will be understood from Fig. 98. When the

voltage of the machine is not in phase with the voltage between

Fig. 98. Method of synchronising by means of a phase indicating transformer.

The switch S of the incoming machine is closed when the lamp has its maximum

brightness.



214 ALTERNATING CURRENT THEORY [CH.

the bus bars, the magnetising currents in the coils round the

outer cores of the transformer will flow for a fraction of a period
in opposite directions. The resultant flux in the middle core is

a maximum when the magnetising forces due to the currents in

the outer coils are in phase with one another. The electromotive

force induced in the coil round the middle core will therefore be

a maximum, and the lamp in series with it will be brightest
when the potential differences between the bus bars and the

terminals of the machine are in phase with one another. The

switch $ is closed at this instant. A voltmeter may be used

instead of a lamp.

The connections for synchronising by means of a high potential

Hi h otentiai
v ltmeter are shown in Fig. 99. The voltmeter is

voltmeter connected to a terminal of each machine and the
method. ...

i i i i i r>
circuit is completed by means of a high resistance H.

^/WWWWWWWWWWWN*

Fig. 99. Method of synchronising by means of a high potential voltmeter.

If the voltmeter be an electrostatic one, the resistance R may be

very large. A thick pencil line drawn on a piece of ground glass

will answer the purpose of completing the circuit. When the

voltmeter has its maximum reading the switch is closed.
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If a number of white spots be painted round the rotor of an

i optical
alternator and be illuminated by light from an arc

methods.
lamp supplied with alternating current of frequency

[ /, then, in certain cases, the white spots appear to be stationary.

I Suppose, for example, that there are m white spots painted at

I equal angular distances apart round the circumference of the

rotor. Since the light from the arc is pulsating with a frequency

2/, it follows that if a spot make the mth part of a complete
; revolution in the time 1/2/

1

,
the spots will appear to be stationary

as they will have their maximum illuminations always in the

same m places and their minimum illuminations at points mid-

way between these places. Now, if there are 2p poles on the

rotor and it makes n revolutions per second, each pole will make

the 2pih part of a complete revolution in the time l/2pn. Thus,

if m equals 2p, the frequency of the alternating current supplied

by the machine when the spots appear stationary will equal /
provided that n equals f/p.

If the lamp be supplied with alternating current taken from

the bus bars, then, as the alternator speeds up, the spots present

the appearance of a ring of a uniform gray colour, owing to the

persistence of luminous impressions on the retina. At a certain

j speed they appear to be rotating rapidly, but this apparent velocity

diminishes as the speed is increased, and finally when synchronism
is attained they appear to be stationary. For higher speeds they

appear to rotate in the opposite direction. If the alternator be

a flywheel alternator with a ring of field poles round its cir-

cumference, the spokes of the alternator sometimes answer the

purpose of the white spots and appear to be stationary when the

,

alternator is running in synchronism with the others.

It has to be noticed, however, that this method only tells us

when the speed is right. It gives no indication of the phase.

When the windings of the armature of the alternators are em-

bedded in slots, then, if the incoming machine have the proper

speed, the switch may be safely closed, since the high inductance

of the armature prevents any excessive rush of current and the

machine is pulled into step by the magnetic attractions and

repulsions of the armature and field poles. In machines with

small armature inductance this cannot be done, and so trans-sm;
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formers, with pilot lamps or voltmeters, must be used in addition

to the optical device.

In Fig. 100 the connections are shown for the Siemens and

Halske synchronising device for three phase plant.

device
r

fo

n
r
sing 1 2

>
and 3 are three lamps, which can be connected

phase across the terminals of the incoming machine and

the three bus bars by means of the switches A and

B. The contact studs marked a l} a z ,
and as in each switch are

connected with the terminals alt a.2 ,
and as of the machines.

oc,

Fig. 100. Synchronising device for three phase alternators.

Suppose now that we turn the handle of the switch A until

the studs <&!,&!, and Cj make connection with the segmental contact

pieces by means of the radial conductors. Let us also turn B round

in the same manner until the studs a2 ,
62 ,

and C2 make contact with

the segmental pieces. Now, following out the connections in

Fig. 100, we see that at and a2 are connected through the lamp 1
;
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bi and c2 are connected through the lamp 2; and Cx and 62 are

connected through the lamp 3. Notice the want of symmetry of

these connections. If the machines are in phase with one an-

other 1 will be out and 2 and 3 will be bright. If the frequency

of the machines be not quite the same, the lamps will be bright

in turn, the direction of the apparent rotation of the light

depending on whether the incoming machine is faster or slower

than the other. Hence we can tell whether the speed of the

incoming machine is too high or too low. When the apparent

rotation is very slow we close the main switch when the lamp 1 is

dark and the lamps 2 and 3 are bright.

The number of studs round the segmental contact pieces of

the switches depends on the number of machines in the station.

For more accurate adjustment, voltmeters like V (Fig. 100) can

be placed across the lamps. In practice, the three phase machines

are wound for high voltages, and hence, step-down transformers

must be used, the lamps being placed in their secondary circuits.

REFERENCES.

L. ANDREWS, Electricity Control.

The Electrical Review, Vol. 48, p. 919,
' Notes on the Theory of Synchronous

Motors and of Alternators in Parallel.' 1901.

LEONARD WILSON, Journ. of the Inst. of El. Eng., Vol. 28, p. 389, 'The Eftect

of Governors on the Parallel Running of Alternators.' 1899.

M. R. GARDNER and R. P. HOWGRAVE-GRAHAM, Journ. of the Inst. of El.

Eng., Vol. 28, p. 658,
' The Synchronising of Alternators.' 1899.

The Electrical Review, Vol. 44, p. 318, 'Synchroniser for Three Phase Plant.'

1899.

BERTRAM HOPKINSON, 'The Parallel Working of Alternators.' Paper read

before Section G of the British Association at Southport, 1903. The

Electrician, Vol. 51, p. 886.

H. H. BARNES, Trans, of the Am. Inst. of El. Eng., Vol. 21, p. 343, 'Notes on

Fly-wheels.' 1904.

For torsional vibrations, see Lord Rayleigh, Theory of Sound, Vol. 1, 159.

For transverse cylindrical vibrations of the second type, see C. Chree, Trans.

Camb. Phil. Soc., Vol. 14, p. 355,
' The Equations of an Isotropic Elastic

Solid in Polar and Cylindrical Coordinates, their Solution and Applica-
tion.' 1887.



218 ALTERNATING CURRENT THEORY [CH. VII

C. CHREE, H. R. SANKEY and W. E. M. MILLINGTON, Proc. Inst. Civ. Eng.,

Vol. 162, p. 371, 'The Strength of Shafts subject to small Forces

rhythmically applied.' Nov. 1905.

For the whirling of shafts, see A. G. Greenhill, Proc. Inst. of Meek. Eng.,

p. 182,
* On the Strength of Shafting when exposed both to Torsion and

to End Thrust.' 1883.

S. DUNKERLEY, Phil. Trans. A., p. 279,
* On the Whirling and Vibration of

Shafts.' 1894.

C. CHREE, Phil. Mag., [6], Vol. 7, p. 504, 'The Whirling and Transverse

Vibrations of Rotating Shafts.' May, 1904.



CHAPTEE VIII.

The alternating current transformer. Raising or lowering the pressure.

Transformer ratio. Magnetising current. Magnetising power. Power

factor at no load. Closed and open iron circuit transformers. Core and

shell transformers. Constant potential and constant current trans-

formers. Floating coil transformers. Formulae for transformers. Air

core transformer. Maximum power factor. Formulae for the air core

transformer. The theory of the floating coil transformer. Inductive

load on the secondary. Condenser load on the secondary. No magnetic

leakage. General solution.

FROM the mechanical point of view the construction of the

alternating current transformer is very simple. If
The alternat- J

ing current a bundle of iron wires be bent into the form of a

ring (Fig. 101) and two coils, PP and SS, of insu-

lated copper wire be wound round it, we may use this piece of

Fig. 101. Alternating current transformer having a closed iron circuit.

apparatus as an alternating current transformer. It will be seen

hat it has three fundamental parts, two coils of insulated copper
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wire and an iron core linking them together magnetically. We
may apply the alternating potential difference to either of the

coils and take power from the other. The coil to which the P.D.

is applied is called the primary coil, and the other the secondary
coil.

Let there be % turns of wire in the primary coil PP and n2

turns in the secondary coil 88. Then, if the relative proportions
of copper and iron have been properly chosen, we have

FI/ ^2 = WI/HZ very approximately,

where Fi is the effective value of the voltage applied at the

terminals of the primary coil, and F2 is the voltage between the

secondary terminals. For instance, if n^ be 100 and n2 be 10,

and if the applied potential difference be 200 volts, F2 will be

20 volts. When the transformer has been properly designed it

is found that an appreciable amount of current and, therefore,

of electric power, can be taken from the secondary without the

voltage F2 being lowered by more than one or two per cent, of its

initial value and without excessive heating of the primary or

secondary coils.

From the formula given above it is obvious that a transformer

can be used for either raising or lowering the pressure

lowering the of the supply. If we apply 20 volts to the secondary
terminals of the transformer described above we get

200 volts across the primary terminals. When it is used for

reducing the pressure it is called a step-down transformer, and

when it is used for raising the pressure it is called a step-up
transformer. A transformer does for electric pressures what a

lever does for mechanical forces. In the one case, the ratio of

the electric pressures remains constant
;

in the other case, the

ratio of the mechanical forces remains constant. If the electric

pressures are too great the transformer burns out, and if the

mechanical forces are too great the lever breaks. If copper had

infinite conductivity and iron infinite resistivity, and if there

were no hysteresis loss in it, a transformer would be a perfect

machine, absorbing power, at one pressure, at the primary terminals,

and giving out the same amount, at another pressure, at the
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secondary terminals. In an analogous manner a lever would be

mechanically perfect if it were absolutely rigid.

The ratio of the effective value of the applied potential

Transformer difference to the effective value of the potential

difference at the secondary terminals, on open circuit,

is called the transformer ratio. We can prove, as follows, that

this ratio is approximately equal to the ratio of the number of

primary to the number of secondary turns of the transformer when

the magnetic leakage is negligible, that is, when practically all

the magnetic flux generated in the primary is linked with the

secondary, and when, also, the resistance of the primary coil is

negligible. If < be the total flux in the core at any instant,

the value of the potential difference #2 across the secondary

terminals at this instant is given by

where n2 is the number of turns in the secondary winding.

Since the flux 3> embraced by the ^ turns of the primary wind-

ing is continually altering, the electromotive force induced in the

primary windings by this varying flux in the core is n^d^jdt.

It follows that, if R1 be the resistance of the primary coil, we have

by Ohm's law

and therefore el
= R^ +

In practice, the resistance of the primary circuit is very small.

In addition, the reluctance of the magnetic circuit is very small,

and hence a small change in the value of \ when the secondary is

on open circuit produces a large change in the value of the flux.

With transformers at ordinary frequencies, therefore, the maximum
value of Rii is very small compared with the maximum value of

n^Qjdt. We can write, therefore, during practically all the

period

and thus, on the above assumptions, we get from (a) and (/3)

n2 e1 + ?ii02
= 0,

and hence
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When the secondary terminals are connected through a resist-

ance, a current will flow in the secondary coil, and the equations

become more complicated. We shall find and discuss these

equations later on. For the present it is sufficient to notice that

by Lenz's law the secondary current will flow in the direction

which tends to prevent any change taking place in the value

of the magnetic flux in the core. The magnetomotive force due

to it therefore will oppose the magnetomotive force due to the

primary current.

The effective value A of the current in the primary coil of

Magnetising
a transformer, when the secondary is on open circuit,

current. an(j a potential difference Vl of given value and at

a given frequency is maintained between the primary terminals,

is called the magnetising current of the transformer. Now the

primary of a transformer when the secondary is open circuited

acts like an inductive coil, and we saw in Vol. I, Chap, in, that

the current taken by such a coil varies considerably with the

shape of the wave of the applied potential difference. We would

therefore expect, for this reason alone, that the magnetising
current of a transformer would vary with the shape of the wave

of the applied potential difference, and this is found to be the

case in practice. Potential difference waves which are approxi-

mately sine-shaped generally produce the maximum magnetising
currents. In order to give a definite meaning to the magnetising
current of a transformer it is customary to specify that the applied

wave of potential difference must be sine-shaped.

The power W ,
in watts, taken by the primary coil when the

Magnetising secondary is on open circuit, and a potential differ-

p wer - ence V
v
of specified frequency is maintained between

the primary terminals, is called the magnetising power taken by
the transformer. The power taken varies with the shape of the

applied potential difference wave. Hence, when ordering trans-

formers, it is necessary to specify the shape of the wave of the

applied potential difference that is to be used in making the test.

It is customary to specify that the wave of the applied P.D. must

be approximately sine-shaped.
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The power factor cos ty at no load is the power factor of the

Power factor primary circuit when the secondary is on open circuit.

The following relation is always true,
at no load.

but it is found by experiment that, like W and A
, cos^rQ varies

with the shape of the applied potential difference wave, although V1

and the frequency are kept constant.

A transformer which consists merely of an iron core wound

with primary and secondary coils, like the one shown

open
6

iron in Fig. 101, is called a closed iron circuit transformer,

transformers
^ne Path ^ ^ne magnetic flux in this type of trans-

former is practically confined to the iron, and hence

its reluctance is small. It follows that very small changes in the

value of the current produce very large back electromotive forces,

and therefore the magnetising current in a closed iron circuit

transformer is small.

Fig. 102. Open iron circuit transformer.

If the iron core of a closed iron circuit transformer be sawn

across and the ends pulled apart, we get an open iron circuit

transformer. The reluctance of the path of the magnetic flux is

considerably increased (Fig. 102), and so it will take a larger

magnetising current, and therefore the losses due to the heating

R^A? of the primary coil will be increased. In practice, however,
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f is only a small fraction of the no load losses, that is, of the

losses when the primary is connected with the live mains and

the secondary is on open circuit. By using more copper in the

primary coil and less iron in the core it is easy to make the no

load losses for an open iron circuit transformer less than for a

closed iron circuit transformer, but the magnetising current is

much greater, cosi/r being consequently much smaller. The large

magnetising current taken by open iron circuit transformers is

a serious objection to their use in practice, and hence nearly all

modern transformers have a closed iron circuit.

The transformers we have considered hitherto are core trans-

formers. In a shell transformer the primary and

secondary coils are placed one over the other and

are encased in a sheath formed of iron plates insulated from one

another. In Fig. 103 the cross-section of a transformer of this

Core and shell

transformers.

O O
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Fig. 103. Section of a shell transformer. The arrowheads indicate the

directions of the flux in the iron plates. The circles represent the sections of the

primary and secondary wires.

type is shown. The inner core contains the primary and secondary

copper coils, which are sandwiched together in such a way that

the number of lines of force common to both coils is a maximum.

The sheath is built up of centre-hole iron stampings, each of which

has a slit from the centre hole to the boundary, so that the iron

strip can be bent and easily slipped round the copper coils. The

strip is then straightened so that the two edges of the slit touch

one another. These stampings form paths of small reluctance for

the flux of induction which embraces both coils. They are gene-

rally pressed tightly together by the ends of the frame in which
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they are held and, as they heat considerably during the working
of the transformer, air spaces are left for ventilating purposes.

Shell transformers are all practically of the closed iron circuit

type and have very small magnetising currents.

Constant potential transformers are those which are intended

Constant
to ^e use^ w^ a constant potential difference applied

potential and across their primary terminals. If they are to be
constant ,.,. .... i i i

current used on a lighting circuit, it is essential that the

potential difference drop on the secondary between

no load and full load, that is, the difference between the secondary

potential differences at no load and full load should not be more

than about two per cent. If a transformer has been economically

constructed, then, when there is the maximum potential difference

drop at the secondary terminals, there ought to be the maximum

permissible heating of the transformer itself.

Transformers which are constructed so that, whatever the

resistance in the secondary circuit may be, the current in the

primary will only alter by a fraction of its open circuit value, that

is, of its value when the secondary is on open circuit, are called

constant current transformers. The leakage of magnetic lines

from the iron circuit linking the primary to the secondary coil in

this case must be made large. When the secondary coil is short

circuited the primary current is always larger than when the

secondary is open circuited, but the power expended is approxi-

mately the same in the two cases. For a particular value of the

resistance of the secondary the power given to it is a maximum.

It is desirable sometimes, as for example in arc lamp series

Floating coil lighting, to maintain the current in the secondary
transformers. constant whatever the load on it may be, although
the potential difference applied to the primary terminals is always

kept constant. This can be managed by suspending the primary
coil over the secondary and counterbalancing its weight. The

principle on which this transformer is constructed is illustrated in

Fig. 104. PP and SS are sections of the primary and secondary
coils of a closed iron circuit transformer. W almost counter-

balances the weight of SS so that on no load it rests lightly on

R. n. 15
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the fixed primary. When the secondary circuit is closed the

induced secondary current, by Lenz's law, repels the current in

the primary. The force of repulsion separates the two coils, and

thus the magnetic leakage between them is increased and the

mutual inductance diminished. The induced electromotive force

5
w

Fig. 104. Floating coil transformer.

and the current in the secondary, therefore, are diminished, and

the position of equilibrium is determined by the relative values of

the weights of W and the coil SS. A properly designed trans-

former of this type will maintain the secondary current very

approximately constant at all loads.

Although the fundamental principle of the ordinary alternating

Formulae for current constant potential transformer is so simple,
transformers.

yet ^he best way of utilising the iron and copper

required for its construction is a problem of considerable com-

plexity. If there is too much magnetic leakage between the coils

in any given design, then this will very considerably increase the

expense of making the transformer. It is therefore essential to

know the effects produced by varying the relative amounts of the

copper and iron, and also the effects produced by varying the

magnetic leakage on the potential difference drop at the terminals

of the secondary. We will first consider the case of the air core

transformer, for although we are not always justified in deducing
the formulae for the iron core transformer from the formulae for

the air core transformer, yet the converse process is always per-

missible and serves as a valuable check on the accuracy of our

results.
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We saw in Vol. I, Chap, x, that the equations to the air core

transformer are
Air core

T cfo'j , , diz
transformer. Q = /.$. -j- Jj, -

-|- Jyl

dt dt

and = R.2ia + M-^ + Lz
~

where Rl} L and R2 ,
/> 2 are the resistance and inductance of

the primary and secondary coils respectively, and M is the mutual

inductance between them. These equations can be written in the

form
d f. M

( l
l + "v-

-.. M .

where a = I - M^/L^
= the leakage factor.

When the resistance of the primary coil is negligible, the

problem is greatly simplified. In this case the secondary current

is determined by the equation

M n T di /n .

-j-e^R^+L^-jj .................. (2).

Hence the secondary current is equal to that produced in a coil

(R2 ,
L2a-) by a potential difference (MjLl)el applied to its

terminals.

Again, since R1 is zero, we get from (1)

If i be the instantaneous value of the primary current at no load,

that is, when iz is zero, we have

d

Hence Lii1 + Mi2
= L1 i + constant.

Since the mean value of the left-hand side of this equation over a

whole period must be zero and the mean value of i is also zero,

the constant must be zero, and thus we have

LJ* ........................ (3).

152
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It follows that the vectors of A lt (MJL^)A Z and A 0t the effective

values of ilt (M/LJ i.2 and i'
,
can be represented by lines drawn in

a plane.

If we multiply equation (2) by iz and integrate over a whole

period, we get

and therefore cos ff = - (L,/M) (E2A 2/
Fa ) ............... (4),

where 6' is the phase difference between e^ and i2 . If equals

ir0',6 will be the phase difference between ^ and i.2 ,
and this

is an acute angle.

When the secondary coil is short circuited, that is when M2 is

zero, we have
M T di,

d

We have, also, el
= L^ -^ ,

and therefore, in this case,

- Mi, = (L.L^/M) i,
- (L.L^/M) i,

and ^ = (1 + M*l(LiL&)} i = i
/<r.

It follows that the shape of the wave of the current in the primary
when the secondary is short circuited is the same as the shape of

the wave of the primary current when the secondary is an open
circuit. Also if A s denote the vector of the primary current when
the secondary coil is short circuited, then J s will be at right angles
to Fj the vector of the applied potential difference, and it will be

in phase with A . We also have

a = A /A S .

Again from (3) we have

and if i2 be the short circuit current in the secondary,

- (M/LJ i,
= i - t = .(!- <r)l<r

= h (1
-

o-).

Hence the phase difference between the primary and secondary
currents when the secondary is short circuited is 180 degrees.
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It is to be noted, however, that it is impossible in practice to

make the resistance of the secondary circuit absolutely zero, as

the resistance of the secondary coil itself is always appreciable.

By properly designing the transformer, opposition of phase of the

currents on short circuit can very nearly be obtained.

If A," denote the effective value of the short circuit current

in the secondary, we have

In Fig. 105, if OF represents the vector of the applied potential

difference Vlt and if OA and OB are the vectors of the open circuit

current A and the current A 8 in the primary when the secondary

Fig. 105. Diagram of the primary and secondary currents in the ideal air core

transformer. OF gives the phase of the applied potential difference, OP is the

primary current vector and PA is Mf^ times the secondary current vector. For

sine waves the locus of P is a circle.

is short circuited, OAB will be a straight line at right angles to OF.

Also BA will be equal to (M/L^Ag" and will give the phase of

the short circuit current in the secondary.

Again let OP (Fig. 105) represent A-^ then, since OA represents

A we see by equation (3) that PA represents (M/L^A^. If we

suppose that the applied potential difference wave is not sine

shaped and that its shape is invariable, then, from (2) we see that

the shape of the current wave iz depends on the relative values of

R2 and L^a and is continually altering as R2 varies. Since

Liii fe^t Mi2 ,

we see that ^ also varies in shape as R% varies. It follows that a

linear relation cannot connect the variables i
,
e1 and ilt since ^

varies with R.2 but e^ and i are invariable. Therefore OP cannot

lie in the same plane as OF and OA. Hence the point P does not
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necessarily lie in the plane YOB, except in the special case when

the applied potential difference wave is sine shaped. Since P
coincides with the points A and B when the secondary is open
circuited and short circuited respectively, we see that as the

current in the secondary increases from zero to its maximum value

P describes a curve in space starting from the point A and finishing

at the point B.

Let us now suppose that el
= V2 Vl sin cot, then from (2) we have

i2 = - {(M/LJ V2Fj sin (cot
-

6)}/(R<? + L^atf,
where tan 6 = L2 o-co/R2 . The angle 6 is thus the phase difference

between el and iz . The inclination of PA to OF (Fig. 105) is

therefore 6, and the angle PAB is ?r/2 6. We also have

A, = (Jf/ZO^i/W + L2*a*corf = (IT/A) F, sin 6/(L,aco).

If we draw PB at right angles to AP, then since

AB = AP/ sin 6 = (M/L,) AJ sin 9 = (M/L^V^L*),
we see that AB is independent of the value of 0. Thus, since the

angle APB is a right angle, we see that when the applied P.D. and

the frequency are constant, the locus of P is a circle described on

AB as diameter.

Again when A 2 is zero, Vl is L^A^. Thus substituting this

value for Vl in the above formula we find that

AB = M*AJ(LiL0) = ((I
-

<r)/r} A-

It is easy to see from Fig. 105 how the currents in the ideal

Maximum a^r core transformer vary as the load on the secondary
power factor. increases. When the resistance of the secondary is

infinite, the magnetising current is OA, and the power factor

is zero. As the load increases, the primary current OP continually

increases. The angle -^ which OP makes with OF is the phase
difference between the primary current and the applied potential

difference. When ^r has its smallest value, cos ty the power factor

of the primary circuit has its maximum value. Hence the power
factor of the primary is a maximum when OP is a tangent to the

circle APB.
In this case, we know, by geometry, that

OP2 = OA . OB.
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Now, we have already shown that

OA = A
,
OB = A S ,

A = o-A 8

and AB = A s
- A =

(l/o-
-

1) A,.

Hence, if Am be the value of the primary current when the power
factor is a maximum and cos tym denote this maximum value,

we have
Am* = A*/<r = o-A s*,

and therefore Am = A /\/cr
= \/(rA s .

Since OP is a tangent to the circle in this case, the angle OPG
is a right angle, and therefore

cos ^m = cos OOP = CP/(OA + AC) = AB/(2 . OA + AB)
=

{(I/a-
-

1) A }/{2A + (l/o-
-

1) A} =
(1
-

o-)/(l + a).

Similarly, sin
i/rm = 2\/<r/(l + er)

and tan tym = 2V<r/(l
-

a).

We also have tan (^rm/2) = x/0".

The maximum power factor cos^rm of the primary may also be

expressed by a series, for

cos ^m = 1 - 2a + 2<r2 - 2o-3 + . . . .

In many practical applications <j is small and we can write

cos
yfrm = l2<7.

We see from the diagram that after OP attains the value AJJ<r
the power factor cos^ continually diminishes and is zero when

the secondary is short circuited.

We shall now give a list of the formulae for the ideal air core

transformer, that is, the air core transformer the
Formulae for

. . .

the air core resistance of the primary coil of which is zero. As

these formulae are frequently used by practical men
as a foundation on which to base rules for designing both trans-

formers and induction motors, the student is recommended to

make himself thoroughly familiar with them. Most of the

formulae follow at once from the simple diagram shown in Fig. 105.

Let Ft, A l and cos-^r be the applied potential difference, the

primary current, and the primary power factor respectively. Let

AQ be the magnetising current, a- the leakage factor 1 - M^jL-^L^



232 ALTERNATING CURRENT THEORY [CH.

and R2 the resistance of the secondary coil. Let also F2 and A 2

be the secondary potential difference and current respectively.

In Fig. 105, OP is A lt OA is A Q) OB is A 8 ,
AP is (M/L^A^

and the angle POY is -^. If we denote the phase difference

between the applied potential difference V1 and the secondary

current A 2 by TT 0, then, if all the vectors are in one plane, we

see, since PB and AB are perpendicular to AP and OFrespectively,

that the angle PBA equals 0. As the secondary current, which is

proportional to AP increases from zero to its maximum value,

increases from to Tr/2.

We have already shown that A equals a-A St it therefore

follows that

If we draw PN at right angles to AB, we have

BN=BP cos = AB cos2

and AN=AP sin = AB sin 2
0.

Also since PN2

equals AN . NB, we have

PN=ABsm0cos0
=

(l/o- -l)A sin 6 cos 0.

Now

-)
2 + AB2 cos2 (9-2 (A/o-) AB cos2

= (A/o-)
2 + (l/o-

-
1)A2 cos2

{(l/o-
-

1)
-

2/0-}

= (A/002 sin2 + A* cos2
0,

and therefore

A = (A/^){sin
2 + <7

2 cos2

<9}*
........................... (5).

Hence

sin0 = (o-/A){(^ 1

2-A2

)/(l-o-
2

)}

i
........................ (6),

and cos0 = (I/A ){(A<?-<T*A*)/(l-<T*)}* ..................... (7 )-

Again, we have cos ^ = PN/OP,
and therefore

coso/r={(l-(7)sm(9cos0|/{sm
2 + (7

2 cos2

6'}

i
............ (8).

If cos
ifrm denote the maximum value of the primary power factor,

we have

<r) .................. (9).
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If W
l
be the power given to the primary, we have

(10)

............(H).

If 6 vary, then Wl has its maximum value when 6 is 45 degrees,

and we then have

w^VtA.v-o)/** .................. (12).

Since the power expended in the secondary when the primary
resistance is zero equals the power given to the primary, we get

W^RiAf .............................. (13),

and from (2) W1
= (M/L 1)V1A a coa0 ............... (14).

From (11), (14) and (6) we also get

A, = (LJM) {(I
-

<r)/(l + <r)}* (A? - Aft ...... (15).

Hence the difference of the squares of A, and A is always directly

proportional to Af. This result could also be proved directly

from the geometry of the figure.

If r2 and x be the resistances of the secondary coil and of the

external non-inductive load respectively, x + r2 will equal R2 the

resistance of the secondary circuit, and F2 equals xA^. Hence,

from (13) and (14), we have

F2
=

{xj(x + r2)} E,A 2
=

{xj(x + ra)} (M/LJV^oB 0...(16).

Let F2

'

denote the secondary voltage on open circuit, then,

F2

'

equals (M/L l)V1 and thus

F2
= F2

/

cos(9-r2 ^l 2 .....................(17).

We may also write this equation in the form

F2
= F2

/

-7-2^ 2 -2F2

/

sin2

((9/2) ............ (18).

If the phase difference between the currents ^ and i'2 be TT a,

we see from Fig. 108 that a is the angle OPA, and therefore

a = ^-0 ........................(19)

and cos a = (OP2 + PA 2 - A 2

)/(2 .OP. PA)
= {A

2

(A? - A*) + MZA^KZML^A,) . . .(20).

Again, we have

A^i sin ^ - L,A = L, (ON - OA)

(21).
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Similarly A^i cos^ MA 2 cos (22).

Formulae (21) and (22) may also be deduced from the equation

We also have

Zj^ljcos = MA 2 + L^Qsiu 6 ............... (23).

Now from (11) and (14) we get

A Q sm0={a/(l-<r}}(M/Ll)A 2 ............ (24),

and hence A l cos a ={!/(!- o-)} (M/LJ A 2 ............ (25).

If 77 be the efficiency of this ideal transformer,

_ useful power _ VZA 2 x

total power VlA l cos-\lr r^ + x'

The greater, therefore, the value of x, that is, the smaller the load,

the higher will be the efficiency.

In the floating coil transformer (see Fig. 104) the secondary
coil has its plane parallel to the plane of the primary

f
the axes of the coils are coincident. We shall

forme
1

?"
8 " now investigate the law according to which the

magnetic leakage must vary with the relative posi-

tions of the coils, so that the mean value of the repulsive force

between them and the effective value of the current in the

secondary may be constant at all distances. Let ^ and iz be the

instantaneous values of the currents in the coils and let M be their

mutual inductance. The instantaneous value / of the repulsion

between them is given by the equation

where x is measured along the axis of the coils. Hence, if the

mean value of this force be F, we have

F = A lA 2 cos a dM/dx,

and therefore by (25)
1 M dM
r^r/ 2 -&

Now since a equals 1 M2

/L1L2 ,
we have

da/da; = - (2Jf/Z^) dM/das,

and thus F = L^A? (d<r/dx)/(l
-

<r).
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But by hypothesis F and A 2 are to be constant at all distances, we

have therefore

(da-/dx)/(l
-

<r)
= F/L2AJ = a constant = k,

and thus cr = 1 (1 CTO) e~
fca;

,

where CTO is the value of cr when x is zero. Hence the leakage

factor cr must increase with x according to the logarithmic law if

the effective value of the secondary current is to remain absolutely

constant.

If we put an inductive load (x, N) across the secondary

terminals, the formulae become
Inductive load
on the

T ^i HJT di*
secondary. e ,

= LI +M ,

Hence we see that the effect is to increase L2 in the ratio

of L2 + N to L2 ,
and also to increase the leakage factor to cr',

where

a'=\- M^L, (L2 + N)} = l-L2 (l- a)l(L2 + N)
= (N + L.2a)j(N + La).

The short circuit current in the primary is now A /o-'
and is less

than when N is zero. The diameter of the circle in Fig. 107 is

therefore diminished. Also, since by (6) and (15)

sin = o-MAJ{(l
-

o-) L.A,},

we see that, for a given value of A 2 ,
is increased by increasing cr.

Now, by (18), we have

V2
= V2

' -r2A 2
- 2 F/ sin2

(0/2).

The voltage drop, V2 V2j for a given current is therefore greater
the more inductive the load.

When the curve of potential difference is sine shaped, we may
replace a condenser of capacity K by an inductive

load on the coil JO, l/(^To)
2
)}. We see, therefore, from the

secondary.

preceding section, that the effect of a condenser in

the secondary circuit is to diminish the resultant self inductance
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of the secondary circuit. It can even make it negative. The

leakage factor <r' is given by

As the capacityK is increased from zero to l/(L2o>
2

), a-' increases

from unity to infinity. When K increases from 1/(Z2&>
2
) to l/(Z2<rft>

2
),

a-' increases from negative infinity to zero, and finally, when K is

greater than l/(L2crcD
2

), <r' is positive and equals or when K is

infinite. It is easy to see that an infinite condenser would act

exactly like a non-inductive coil of zero resistance.

Let us first suppose that the value of K lies between zero and

1/(Z2 &)
2
) so that a is positive and greater than unity. If we now

suppose that the condenser is in series with a non-inductive load x,

OB A

Fig. 106. Condenser K in series with the secondary, K being less than l/L2w
2

.

then, since the short circuit current A /a-'
is less than A

,
B in

Fig. 106 will be to the left of A, and the locus of the extremity

Fig. 107. Air core transformer with a condenser K in series with the secondary,

K being greater than l/L2w
2 but less than l/Z/2<rw

2
.

of the primary current vector OP will be the semi-circle described

on AB as diameter. If K is made equal to 1/(Z2 &>
2

),
then B
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coincides with 0, and the current in the primary continually

diminishes as the resistance of the secondary is diminished. When
the resistance of the secondary is zero, the primary current is zero,

although the secondary current is now a maximum. The primary

circuit therefore acts like a non-conductor when resonance takes

place in the secondary.

When K is greater than l/(Z2 a)
2

),
but less than l/(Z2 o-a>

2

),
cr' is

negative and B is to the left of (Fig. 107). In the particular

case, when a is 1 and K is therefore 2/{Z2 (l + cr)&>
2

},
we see

that the primary current is constant in magnitude whatever may
be the load on the secondary.

When K equals l/(L.2 cr(o
2

),
a' is zero, and the transformer acts

exactly as if it had no magnetic leakage (Fig. 108). The locus of P

O A

Fig. 108. Air core transformer with no magnetic leakage. M 2=L
1
L2 .

in this case is a straight line, as the centre of the circle is at

infinity, and we have

The primary and secondary potential differences are also always in

exact opposition in phase.

When K is greater than l/(jC2 crar) then cr' is positive and less

than unity. In this case (Fig. 109) OB is A
/<r',

and is very large

when cr' is small. Finally, when K is infinite OB is A /o; and we

get the ordinary transformer diagram.
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O A B

Fig. 109. Air core transformer with a condenser K in series with the

secondary when K is greater than l/L2<rco
2
.

When there is no magnetic leakage a is zero, and the problem

NO magnetic
becomes much simpler. In this case we will take

leakage. faQ resistance of the primary into account. Let us

suppose that the load is non-inductive. Replace the transformer

by its equivalent net-work (see Vol. I, Chap. x). The choking

coil Zj (Fig. 110) is shunted by the non-inductive resistance

2

,
and is in series with the resistance Rlt The current in

rAWW\A-t

Fig. 110. Equivalent net-work of a transformer with no magnetic leakage.

the secondary is in opposition in phase to the current i' in the non-

inductive branch L-?RJM* y
and its magnitude is LJM times this

current. Our equations are

el
= Rlil + (LflM

t
)K^' ............(a),

-A .............. . ............... (6),

and (a),

where i is the current in the choking coil L,.
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Now, we see from (6) that whatever the shape of the applied

wave of potential difference, the currents i and i
r

are in quadrature,

and thus we have

since i' = (M/L^i^, where i*2 is the secondary current.

In Fig. Ill let OF be equal to Fj and let OP represent

Describe a semi-circle on OF as diameter, and let YP produced

Fig. 111. Transformer diagram when the magnetic leakage is zero.

1
A 2 , OB=R1A, O =JV , and OY=Vl .

meet this circle in B. Join OB. Then since, by hypothesis, OP

represents RiA lt therefore from equation (a) we see that YP will

represent (Ll/M)R2A 2 in magnitude and phase.

Now equation (c) is

h -+*'
and since i and i' are in quadrature we get, on multiplying each

side of the equation by i', and taking mean values,

but A f =

and therefore cos a =

where a is the phase difference between A l and A'
t
and TT OL is
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therefore the phase difference between A 1 and A.2 . In Fig. Ill

PB gives the phase of A 2) and the angle OPB equals a.

Hence cos OPB = (MA^KL.A,) = BP/OP,
and thus BP = (M/LJ R,A Z .

We have also

2 = OP 2 - 5P 2 = R* [A* - (M/LrfA 2*}
= R*A\

and hence OB = R1A.

We shall now make the assumption that the applied potential

difference wave is sine shaped. In this case PY equals co^A,
since this line represents the voltage across the choking coil in

Fig. 110.

Thus OB/PY^RiA/aLiA = R^/coL, = a constant.

Let B (Fig. Ill) be the position of B when the secondary is on

open circuit. Then we have

OB/PY=OB /BQ Y,

and therefore OB/OB, = PY/B Y.

Also, since the angle BOB = the angle B YP, it follows that the

triangles BOBQ and B YP are therefore similar, and the angle

B PY equals the angle B BO and is therefore constant. Hence

the locus of P is a circle passing through B and Y.

The secondary electromotive force is R2A 2 ,
and this equals

M/L-i times PY. The value of the magnetic flux also is pro-

portional to the current in L^ (Fig. 110), that is, to A. Hence

the magnetic flux is proportional to OB. We have seen that the

secondary current is proportional to PB. The magnetic flux

therefore continually diminishes and the secondary current

continually increases as the resistance of the secondary is

diminished. We can see from the diagram that the primary
current which is proportional to OP diminishes slightly at first

(Vol. I, p. 217).

When the secondary is short circuited, P coincides with Y
and Vl

= R1A l
= (M/Ll)RlA 2 . Hence the power RA? given to

the transformer is entirely expended in heating the primary

coil.
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We saw in Vol. I, p. 217, that when a potential difference

General El sm<ot is applied to the primary terminals of a
solution.

transformer, the primary and secondary currents are

given by

i = Ej. sin (cot
-

flO/K^i + m^Rtf + (L,
- mfLjf o>

2

}*

= /! sin (cot !),

and i,2
= {M^co cos (tot i tt*)}/(Rf + Z2

2
o>

2

)*.

In these equations

mf = M*co2

/(R,? + Z2
2
o>

2

),

tan
!
= (A - ra^Za) ^/(jR! + ^^2),

and tan 2
= L2 co/R.2 ,

If the applied wave e: be given by the equation

6? = E sin - + ^ sin

then, by writing down the values of ^ and i^ for each term

separately and adding them up, we get the complete solution.

The square of the effective value of the primary current would

be equal to

where ra2^ = M* (2n
-

I)
2
co

2

/{R<? + Z2
2

(2w
-

I)
2
o>

2

}.

The complete analytical solution of the air core transformer can

thus be written down by Maxwell's method.

R. II. 16
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Difficulty of the sine curve assumption. Flux and applied potential

difference wave. Magnetising current. Shape of the magnetising current

wave. Magnetising current obtained on the sine wave assumption.
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transformers. References.

WHEN iron sheets are placed in the path of the flux of an air

core transformer, then, for the same power in the
The alter- r

. . .

current secondary circuit, the primary current is considerably
transformer. i i mi j , i

reduced. The magnetising current, in particular, is

very much smaller. We see, therefore, that unless the induced

currents and the hysteresis losses in the iron sheets are excessive,

it is more economical to use an iron core transformer, as not only
the losses due to the heating of the copper in the primary coil, but

also the losses in the mains and in the armatures of the generators

due to the primary current are much smaller. The initial cost

also of iron core transformers is much less, and so they are

practically always employed.
In order to reduce the losses due to eddy currents, the core is

generally built up of plates of thin sheet iron insulated from one

another. In Vol. I, Chap. XVI, we saw that these eddy currents

dissipate power directly by heating the iron in which they flow.

They cause losses by screening the interior of the iron sheets from

the magnetic forces, and thus make the primary current larger

than that required to produce the same magnetic flux if it were
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uniformly distributed throughout the core. We saw also that the

irregular distribution of the magnetic flux increases the hysteresis

loss. We can, however, make the eddy current losses very small

by using very thin sheet iron.

Since there is no known formula that gives the magnetic force

H as a function of the magnetic induction B which it produces,

the problem of finding the relations between the currents and the

voltages in an alternating current transformer does not admit of

an exact analytical solution. Approximate solutions, however, can

be obtained which are of value in practical work. We shall first

consider from a general point of view the various losses that take

place in the copper and iron used in the construction of the trans-

former.

The principle of the action of the iron core transformer is the

same as that of the air core transformer. When the

transformer secondary is on open circuit, we have a current in

wcondary is tne primary coil magnetising the core and producing

.

n
rc

P
t

en a magnetic flux the bulk of which is linked with the

secondary coil. The losses in this case are mainly
due to the heating R-^A^ of the primary coil by the primary

current, and to eddy current and hysteresis loss in the core. In

addition there may be eddy current losses in the copper of the

secondary winding or even in the copper of the primary winding
itself. Sometimes also, when the transformer is enclosed in a cast

iron case, leakage flux from the primary may cause eddy currents

in the case. When the frequency is high the current density

over the cross section of the primary winding is not uniform, and

this increases the value of Rl and therefore the RiA<? losses. In

practice R^Af, where Rl is the resistance of the primary coil, gives

the minimum possible value of the copper losses.

As a non-inductive load on the secondary circuit increases, and

Losses under therefore as the secondary current increases, the
load -

primary current increases also. If 4?r(3?/10 be the

reluctance of the path of the magnetic flux $, common to both

primary and secondary coils, we have at every instant, by the

indamental magnetic equation,

162
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where ^ and iz are the instantaneous values of the primary and

secondary currents, arid n^ and n^ are the number of turns of the

primary and secondary coils respectively. Some of the magnetic
lines linked with the secondary current do not pass through the

primary circuit, and, as in the case of the leakage flux from the

primary, these lines may give rise to eddy currents and so increase

the losses. We may divide the losses in the loaded transformer

into iron and copper losses. The iron losses are due mainly to

hysteresis and eddy currents in the core, but the losses in the iron

case are sometimes appreciable. The copper losses,R1A l
* + R2A 2

2
,

are caused by the primary and secondary currents heating the

coils, and in addition there are losses due to eddy currents in the

coils themselves. For frequencies higher than fifty it is advisable

to use stranded conductors for the primary and secondary windings
if they have to carry large currents, as otherwise the eddy current

losses are appreciable.

In order to simplify the theory, we assume that the applied

potential difference wave is sine shaped. Even in
Difficulty of x -ill.
the sine curve this case, however, the current wave will not be sine

shaped owing to the fact that the flux in the iron is

not proportional to the magnetising force. To simplify the problem,

therefore, we must assume not only that the P.D. is sine shaped
but that the current and the magnetic flux also obey the harmonic

law. We shall show that this virtually amounts to assuming that

the shape of the hysteresis loop of the iron in the core of our

imaginary transformer is an ellipse.

If the current in the primary winding of the transformer when

the secondary is on open circuit is / sin cot, we may write

h = Hm sin cot,

where h denotes the instantaneous value of the magnetising force

and Hm is its maximum value. If the magnetic flux also obey
the harmonic law we can write

b = Br cos cot + B sin cot,

where b is the instantaneous value of the flux density, Br the

remanence, and B the flux density when the magnetising force

is Hm .
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If we eliminate the trigonometrical functions from the above

equation we get
,

Plotting out the curve represented by this equation we get the

ellipse shown in Fig. 112. In this figure a real B, H curve for

iron sheets is superposed on the ellipse. The remanence is the

same in each case, but the coercive force is a little greater for the

P

Fig. 112. Keal hysteresis loop PEP'CP and hypothetical elliptic

hysteresis loop.

ellipse. In the hypothetical iron the induction density goes on

increasing for some time after the magnetising force has begun to

diminish, whilst in the real iron H and B attain their maximum
values at the same instant. This is the main difference between

the real and the hypothetical hysteresis loop.

It is proved in treatises on Conic Sections that if we transform

an equation of the form

ax2 + Zhxy + bf = 1,
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from one set of rectangular axes to another, the quantity ab h?

remains unaltered. It follows, by referring the ellipse to its

principal axes, that its area is equal to 7r/Va& h?.

Hence the area of the ellipse in Fig. 112 is

Now the work done in taking a cubic centimetre of iron which

obeys the elliptic law through a cycle is

(Il4nr)flidb
= 7rHmBrl^7r

=HmBr/4< ergs.

When b is zero h equals Hc the coercive force, hence

If Bm denote the maximum value of the induction density, it is

not difficult to show that

Bm = (B,? +

Hence HcBm =HmBr ,
or HJHm = Br/Bm .

We have already in Chapters I and II made the assumptions that

the flux and the current follow the harmonic law; we have

therefore assumed that the hysteresis loop of the iron is an ellipse.

We can see that the area of the ellipse is greater than that of the

real hysteresis loop, and hence it may be supposed to take into

account some of the eddy current losses.

The maximum value of the flux produced in the core of a

nd
transformer cannot be predetermined unless we know

applied the shape of the applied potential difference wave.

difference The voltmeter reading on the primary side only gives

us the effective value of the voltage. It gives no

indication of the wave shape. Let el and ^ be the instantaneous

values of the primary voltage and current respectively. If n-^ be the

number of primary turns, we may write

where
c/> equals the mean value per turn of the instantaneous flux

linking the primary with the secondary circuit, and
(f>a equals the

mean value per turn of the instantaneous flux linked with the

primary alone. The path of the flux
</>

we may consider to be
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entirely in the iron, whilst the path of the flux
<j>a is partly in the

iron and partly in the air and copper or entirely in the air and

copper. The fluxes
</>
and

<j>a are therefore not in phase with one

another, and the complete problem is very complex. In practice,

however, the maximum values of the terms R^ and n^dfyajdt are

quite negligible compared with the maximum value of

To a first approximation, therefore, we have

_

where < is the resultant flux in C.G.S. units and e is in volts.

When el is zero, d(f>/dt vanishes, that is, the rate of increase or

decrease of
(/>

is zero, and therefore must have a maximum or

a minimum value. Owing to the maximum positive value of the

alternating current obtained from an alternator being exactly

equal to its maximum negative value, the maximum and minimum
values of < are equal numerically but have opposite signs. Let

^max. and ^max. be these values respectively, and let ^ vanish

when t is tly then we have

and therefore I n^dfy . 10~8 = the area of the applied potential
J - $max.

difference wave

and thus 2^0)max = A' . 108
.

If we write <I>max .

= S . 5max where S is the mean cross sectional

area of the core, we get

Baa.= W. A'/(Zni S).

In calculating A' in this formula, the ordinates must be measured

in volts, and the abscissae in seconds. The maximum induction

density is therefore directly proportional to the area of the wave

of the applied potential difference.

It is proved in Vol. I, Chap, ill that, when the effective value

of the applied voltage is maintained constant, the more peaky the

wave the less will be its area. The more peaky, therefore, the

wave, the smaller will be the value of -6max.,
and hence, by Stein-

metz's law, the less will be the hysteresis loss.
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If the frequencyf vary, the shapes of the applied waves being

always similar and their effective values equal, the areas of the

waves will be directly proportional to the period, and thus will be

inversely proportional to the frequency. For instance, if we were

to increase the frequency to nf, the maximum value of the in-

duction density would diminish to Bm&x /n.

Let the instantaneous value of the applied potential difference

be denoted by E sin cot, then

rr/2 r nr/2
A' = E sin cotdt = (E/to)

- cos tot\ = 2E/a> = V2 FJ/TT/,

where A' is the area of the positive half of the wave, and Vl is

the effective value, of the applied potential difference.

Therefore V^FJ/TT/^ 2n1 J9max .
10~8

,

and V, = TT V/tf^. 10-8

= 4.443rc1/Bmax .

10-*.

Let the form factor (p. 16), that is, the ratio of the effective

value FL to the mean value vm of the applied RD. wave, be &, then

we have

Vl
= kvm = MA'/T = 2kfA

f = 4ybia/ max .
10~8

.

Values of k are given on p. 18. For very peaky waves k can be

very large, and therefore a mere knowledge of the value of Vl only
determines the maximum possible value that Bm&x can have,

namely, F110
B
/(4n1/)S). It has this value when k is unity, that is,

for a rectangular wave.

When b has its maximum value so also has h, and we have

therefore 5max = //-Tmax.,
where //-is the permeability

^*fe
n
n
e

t

tlsmg of the iron when the magnetising force isHm&x . Now
if /max be the maximum value of the primary current,

#max. = ^TTTii/maxJlOl, where I is the mean length of the path of

the flux in the iron. We thus find that

where the symbols have the same meaning as in the preceding

paragraph.
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Let k' be the amplitude factor of the current wave, that is, the

ratio of A to /max- , then, we have A = k'Im&x ,
and thus A Q can

be found when k and k' are known.

Let A and AJ be the magnetising currents of the primary and

secondary coils of a transformer when used as a step-down and

step-up transformer respectively. Since the maximum value of

the flux in the core will be the same in the two cases, the

magnetising ampere turns will also be the same, provided that the

wave shapes are the same, and hence A /A
'

njn^.

The following test of a five kilowatt hundred volt to five volt

transformer illustrates how the magnetising current of a trans-

former varies with the frequency and also shows the practical

limitations of the above formula. In the first test (Fig. 113) the

16
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Fig. 113. How the magnetising current of the primary varies with

the frequency.

primary P.D. is maintained at 100 volts at all frequencies from

100 to 25. The magnetising current varies from 0*85 to 15
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amperes. The frequency for which the transformer is constructed

is 80, and so its magnetising current is one ampere. For fre-

quencies below 25, a very slight change of the frequency produces
a very great change in the current, and for frequencies above 100

the current is practically independent of the frequency.

A potential difference of five volts was now maintained across

the secondary terminals, the primary being on open circuit, and

the frequency was varied between 100 and 25. The current

varied from 18'5 to 180 amperes (Fig. 114). At high frequencies

^uu
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80

60
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maximum or a minimum value when el is zero. If we suppose

that el
is zero when t is zero, we get

I rT/2 i rt

$ = -- *!<& + e,dt,
2w! Jo njo

the flux having its maximum and minimum values when t is T/'2

and zero respectively. The current will also have its maximum
and minimum values at these instants. The flux

c/>
vanishes at

the instant when the ordinate el
divides the area of the positive

half of the wave into two equal portions. If the curve be sym-

metrical, this will be when t equals T/4. In the time to T/4>,

<f>
increases from <I>max to zero and therefore (see Fig. 115)

-4000

Fig. 115^ Hysteresis loop for steel strips. (F. J. Dykes.)

i increases from Jmax to Ic ,
where Ic is the current which pro-

duces the coercive force. In the time T/4s to T/2, i increases from

Ic to /max ..
We see, therefore, that, even when the applied wave

of potential difference is symmetrical, the current wave is unsym-
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metrical, varying more rapidly in the first quarter of a period than

in the second, and similarly it varies more- rapidly in the third

quarter of a period than in the fourth.

When we know the shape and the magnitude of the hysteresis

loop of the iron forming the core of the transformer and also the

shape of the applied P.D. wave, we can construct the current wave

as follows. At the times 0, T/2n, 2T/2n,... nT/2n, erect ordinates

to the P.D. curve el ,
and calculate the value of

</> by means of the

formula given above, the integrals being evaluated by means of a

planimeter. We then find from the hysteresis loop the values of

the currents corresponding to these values of <, and, choosing any
convenient scale, mark off these values along the corresponding

ordinates of the curve e^ Drawing a curve through these points,

we get the wave of magnetising current. It is to be noticed that

we have neglected the effects of magnetic leakage and of eddy

currents, and we have supposed that the primary resistance is

negligible. In many practical cases this is permissible.

The curve in Fig. 116 shows the shape of the magnetising

current wave when the applied P.D. wave is sine shaped and when

Fig. 116. Shape of the wave of the magnetising current, when the core is built

up of steel strips the hysteresis loop of which is shown in Fig. 115 and the applied

P.D. wave is sine shaped.

the hysteresis loop of the iron in the core is as given in Fig. 115.

In this case, the shape of the current wave is not unlike the shape

of the tooth of a carpenter's saw. Hence it is described sometimes

as being shaped like a saw-tooth.
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F. J. Dykes has made an harmonic analysis of the curve shown

in Fig. 116. He finds that the equation to the curve is

i = 0*59 sin cot 0'7l cos cot

+ 05 sin Scot - 0'22 cos Scot

- 0*02 sin ocot 0'05 cos 5cot

- 0'02 sin 7 cot - 0'02 cos 7cot

It will be seen that the amplitude of the third harmonic is

approximately equal to a quarter of the amplitude of the first

harmonic. The presence of this large third harmonic in the wave

of the magnetising current often produces appreciable effects in

practice, especially in polyphase working.
We can also construct the wave of applied potential difference

necessary to produce a sine shaped wave of magnetising current.

We first of all construct the flux wave by means of Fig. 115, and

then draw the required wave of potential difference by means

Volts

Fig. 117. Shape of the wave of the applied P.D. required to produce a

sine shaped magnetising current.

of the formula e1
=

n^dfyjdt. The ordinate ^ is therefore equal to

n^ times the slope of the flux wave. The curves shown in Fig. 117

were constructed in this manner by F. J. Dykes.
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In Vol. I, Chap, xvi, formulae were found for the eddy current

losses in metal sheets when subjected to harmonic
Core losses.

.

J

magnetising forces. In order to produce these forces

in the core of a transformer built up of iron plates, the applied

potential difference wave must have the shape shown in Fig. 117.

We assumed, however, that the permeability of the metal was

constant, and therefore that the flux wave also obeyed the

harmonic law. We see from Fig. 117 that this assumption is not

justified. If the permeability were constant, the hysteresis loop

would be a straight line and the hysteresis loss would be zero.

The formulae, therefore, when applied to transformer cores, can

only be regarded as roughly approximate.
We proved, however, that the power expended in the secondary

coil of an air core transformer, when the primary resistance is

negligible, is given by (Vol. I, p. 352)

where a is a constant which has its minimum value unity when

the applied wave of P.D. is sine shaped. Now, since we may
regard the path of a filament of eddy current as a secondary
circuit of a transformer, we may consider, when the screening effect

of the eddy currents is negligible, that the eddy current loss can

be represented by the sum of a series of terms of the form

If the amplitudes of the higher harmonics of the applied wave

of potential difference be small compared with the amplitude of

the first harmonic, we see from the formula given in Vol. I, p. 80,

that a is nearly unity. When the applied waves have the shapes
shown in Vol. I, fig. 16, p. 71, and R2 is small compared with L^o-co,

a is

(2/w) [(( + 2) (2n + 3)}/(2 (2n +1)}]*.

For a triangular wave n is 1 and a is T007 nearly. Hence the

values of a for a sine wave and a triangular wave differ from one

another by less than one per cent. We should therefore expect
that the difference between the eddy current losses in the core

produced by a triangular shaped wave and a sine shaped wave of

equal effective voltage and having the same frequency, when
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applied to the primary terminals of the transformer, would be too

small to be measurable.

The formula also shows us that, if Z/2 cr&> be small compared
with E2 ,

the eddy current losses in the core will be practically

independent of the shape of the wave of the applied potential

difference. It has been proved experimentally that in several

types of transformer, the eddy current loss is approximately inde-

pendent of the shape of the wave of the applied potential differ-

ence, when the effective primary voltage and frequency are

constant.

As a rule, the hysteresis loss in the core is much larger than

the eddy current loss. We see by Steinmetz's law that it depends

practically only on the value of Bmax ,
and therefore, when the

primary resistance of the transformer is negligible, on the value of

the area of the applied wave of potential difference. In Vol. I,

Chapter ill, many illustrations are given showing how waves of

equal effective voltage may vary in shape. It is proved that

peaky waves have a smaller area for a given effective voltage than

rounded waves, and so, although they cause practically the same

eddy current loss, they cause smaller hysteresis losses.

In practice, transformers for use on low frequency circuits

work at higher induction densities than those for use with higher

frequencies. For instance, in transformers constructed for use in

circuits where the frequency is 25, -Bmax may be 8000 or even

10,000 C.G.S. units. On the other hand, if they are constructed for

a frequency of about 100, 4000 C.G.S. units would be a usual value

for -Bmax ..
The iron sheets used in the construction of the core are

generally from 10 to 20 mils, that is, from 0'025 to 0*05 centi-

metres in thickness. In commercial transformers, therefore, we

may regard the screening effect of the eddy currents as negligible.

By Steinmetz's formula, it can easily be shown that the hysteresis

loss per kilogramme of the core is practically the same when

the frequency is 100 and ,Bmax is 4000, and when the frequency
is 25 and ,Bmax .

is 10,000. The eddy current losses per kilo-

gramme, however, would generally be less in the latter case.

In a choking coil with no iron in the core, the sine shaped
wave produces the maximum magnetising current (Vol. I, p. 80).

In a transformer, with the secondary on open circuit, the current
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has to do work, owing to hysteresis and eddy current losses in the

core. The wattless component of the current, however, produces
a flux which is practically the same as that which would be

produced if the iron were absent. For a given applied effective

voltage therefore the wattless component of the current is a

maximum for a sine shaped wave of P.D. The hysteresis losses

will be a maximum for the wave of given effective voltage that

has the maximum area, that is, for the rectangular wave. In

this case, if we assume that the eddy current losses are the same

whatever the shape of the wave, the watt component of the

current will be a maximum. The watt component is therefore

a maximum for the rectangular wave and the wattless component
for a sine wave. We should therefore expect that the magnetising
current of a transformer would be a maximum for a wave shape
a little more rounded than a sine curve, and this is found to be

the case in practice.

The copper losses at any load may be calculated from the

formula

If the frequency be high, then the real losses will

be greater than those calculated by this formula owing to the current

density being greater near the circumference of the conductors

than along their axes (Vol. I, p. 47). If the secondary coil be

a solid conductor of large dimensions, the losses in it owing to eddy
currents may be large. For this reason, when the frequency is

greater than 50, the secondary conductor is generally stranded.

If we make the assumption that there is no magnetic leakage,

that is, that all the flux generated in the primary
Constant po- 111 < i

tentiai trans- passes through the secondary, the equations can be

no Magnetic written down without difficulty. When the secondary
leakage.

jQa(j ^
-

g non _mc|uctive we can write

and

e-, Rii, + ??i
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In these equations the symbols have their usual meanings. It

must be noted that the flux
</>
and the reluctance 4?r(R/10 are not

single valued functions of n^-^-n^, as they have different values

for a given value of this variable depending on whether it is

increasing or diminishing.

From equation (1) we have

e -
1

dt
'

If we square each side of this equation and take the mean values

for a whole period, we find that

Fa

2 - 2R, W, + R*A* =
??!

2F2
,

where Wl is the mean value of e^, that is, the mean power given

to the primary, and V is the effective value of d<f>/dt.
If we now

write VlA 1 cos-^l for Wl} we see by draw-

ing a triangle (Fig. 118), the sides of

which are equal to Vlt n^V and RiA l

respectively, that the angle between Vt

and R^A! will be equal to
^jrl

. In Fig.

118, OB is the applied potential difference

Vl and OA is R,A^
From the diagram we see that we

may suppose the applied potential differ-

ence OB to be replaced by its two com-

ponents OA and AB respectively. The

component AB neutralises the back

electromotive force due to the variations

of the flux in the primary coil, and the

component OA drives the current A l

through the resistance R lt Now, in com-

mercial transformers, whether the iron

circuit be open or closed, R 1
A l is rarely

as great as the hundredth part of Vlf even

at full load. Hence the lines OB and AB
in Fig. 118 are nearly coincident, and the

phase difference between the applied P.D.

and the electromotive force set up by the

varying flux of induction in the core is always nearly 180 degrees.

R. II. 17

c
Fig. 118. The funda-

mental diagram of a trans-

former. OB=Vlt

OA =R1
A

1 , AB= nl V,

AC= n<,V=V2 + r2 A 2 .

The angle BOA equals \//l
.
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Again from (2) and (4) we get

nzV= V2 + r2A 2 ,

and from (2) the phase of i2 is in opposition to that of v, and

thus, if we produce BA to C in Fig. 118 and make AC equal to

(nz/n^AB, then AC will represent Vz + r2A 2 in magnitude and

phase. We always have

V* - 2R,W1 + #Mi2 = n*V2

= (%
2/<KF2+M 2)

2
.

When there is no secondary load, A 2 is zero, and we get

TF - R1A^ = (1/2^) {F,
2 - R.A? - (nflnf) F2

2

},

where TT is the power taken by the primary in this case and A Q is

the magnetising current. If we measure, therefore', R1} Vlf A and

F2 ,
when the secondary is on open circuit, and if we know the

ratio of n^ to n2 ,
we can find the core losses at no load by this

formula. In practice, however, the formula is of little use, as we

are measuring the small difference between the large numbers Fx

2

and (n-ifn^ F2
2
,
and so a small error made in measuring either F,

or F2 will introduce a large error into the calculated value of the

core loss.

In practice, R^A^ (OA in Fig. 118) is always very small. It

follows that n^V(AB) is very nearly equal to Vl (OB),
Bmax. is nearly

'
.

. j jr
constant at and, therefore, when F, is maintained constant, n^ V

will also be practically constant. Now since v equals

d<f)/dt, we have

v = d(SB)/dt,

and thus (p. 248) F= 4&/S max .

10~8
volts,

where k is the form factor of the applied P.D. It follows that if

the shape of the applied P.D. wave and the frequency be maintained

constant, 5max .
will also be constant. At full load, the difference

between OB and AB, which in closed iron circuit transformers

equals RiA l} is generally less than one per cent. Hence -Bmax .

varies by about one per cent, only, between no load and full load.
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1-6

max. >

current
in the core

Resultant am-
pere turns.

As the power lost owing to hysteresis is proportional to B
it follows that it diminishes by about T6 per cent.

eddy
eresiS

only between no load and full load, provided that the

losses snape Of the applied wave is always the same. If

the shape of the wave alters, the hysteresis loss may

vary largely, although Vl is kept constant. The eddy current

losses in the core, on the other hand, have practically the same

value at all loads, when Fx is constant, although the shape of the

applied wave alters considerably. If R^A^ at full load be one per

cent, of F15 the eddy current losses at full load would be about

two per cent, less than at no load.

When the maximum value of R& is negligible compared
with the maximum value of

n^dfyjdt, we can write

?*! d<f>/dt
= el ,

and therefore
(f>
= (l/nl)fel dt,

the constant term being zero because
<j>

is a purely alternating function. We see

that in this case
</> depends only on the

value of gj. Now to each value of
</>

as it

increases there is a definite value of the

magnetising force, and therefore a definite

value of the reluctance (R Similarly to

each value of
(f>

as it diminishes there is

a definite value of (R We thus see that,

in this case, </>(R depends only on the

shape and magnitude of the primary

voltage el . It is therefore independent
of what is happening in the secondary

circuit, and it is therefore the same
,, ,, n i i TT i Fig. 119- The currents
function of * at all. loads. Hence by in the primary and secondT

equation (3) the resultant magnetising ary of a transformer with

turns n^ -f- n^i2 must be the same at all no magnetic leakage,

loads. WT
e therefore have OD=A lt OC=A

Qt

o

where i is the current in the primary when there is no load on the

172



260 ALTERNATING CURRENT THEORY [CH.

secondary. Since a linear relation connects ilt i*2 and i we can

construct (see Vol. I, p. 181) a triangle (Fig. 119) the sides of

which are A lt A and n^AJn-^ respectively. The angles of this

triangle will give the phase differences between the various

currents. Again, by equations (1) and (2) above, we always
have

e,
=R^ -

(njns) (rz + x) i2 ,

and thus a linear relation connects el9 ^ and ia ,
and therefore their

vectors lie in a plane. If OY (Fig. 119) be the position of the

vector representing Vlt then OY, OD and 00 will be in one plane

and the angle YOD equals ^ where cos^j is the power factor of

the primary.
If the angle YOG be ^r ,

we have, by trigonometry,

A l sin^ = ON
= A Q sin T/r (a)

= a constant,

and J^COS^T! (n2/nl)A,>= A costy (6),

and therefore

tan^ = n^Ao sin ^ /(n zA 2 +n^ cos
-\|r ) (c).

These equations are useful in practical work, and enable us to

determine accurately the primary power factor for any secondary

current.

The following are the data for a Swinburne open iron circuit

transformer of the '

Hedgehog
'

type : V1
= 2400 volts,

ni/n2
= 24, A = 0*70 ampere and W = 84 watts.

Let us suppose that we require to find the primary current

and power factor when the secondary current is 50 amperes.

Since W = V^A, cos <f
= 84,

it follows that cos
i/r

= 0'05, and therefore sin ^r
= TOO.

Hence, by (c),

tan
-xjrj

= U-^AQ sin ^^(n^A^ + n^A^ cos
i/r )

= 0'33,

and therefore ^ is 18'3 degrees and cos -^ = 0*91.

Finally from (a) we have A
l
= A sin ^ /sin^
= 2*23 amperes.
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Looking back at Fig. 118, by projecting OAB on OB, we see

The secondary
voltage . Vl

=
?liV + R A ! COS fa ,

for the cosine of the angle ABO is always practically unity.

Thus, from (6),

Vi = (wi/wj) (Fa + ra-4 s) + R, {(n./n,) A 2 + ^ cos fa],

and hence

^2 = (Wa/^i) PI ~ fa +

This formula is a useful one. The last term (n.2/nl)R1A cosfa is

generally negligible.

The data for a 15 kilowatt Ferranti transformer are as follows.

The resistances when warm of the primary and
Example. _

A

secondary coils are 2'75 and 0'0061 ohms re-

spectively. The applied primary voltage is 2400, the ratio

(wiAO f the turns is 24 and the power TT taken by the trans-

former on no load is 240 watts. We have

r2 + (n,/n^ R, = 0'0061 + (1/24)
2 275

= 0-011.

We also have ViA cos
T/TO

= 240,

and therefore A cos ^r
= 0*1.

When the secondary current is 150 amperes, we have

F2
=

(1/24) 2400
- 0-011 . 150 - (1/24) 0'275

'

= 100 -1-65 -0-01

= 98-34.

The rating of a transformer depends on the permissible voltage

drop at the secondary terminals. If we assume that
Output. i .

a two per cent, drop is the maximum permissible,

the rating of the transformer would be the power in the secondary

when the voltage drop is two per cent. In this case we get by
formula (d)

A,' = {(,/,) F, - (n,jni) R,A, cos f,}/[50 {r, + (>i)2

*.}],

where A.2
'

is the maximum permissible current in the secondary.

Hence the rating of the transformer is

(49/50) {(n,/^) V, - (n2/ni) R.A.cos ^ ]
A 2',
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and, since ^/n^^A^cos^ is always very small, this may be

written

[49

The efficiency of a transformer is the ratio of the power
utilised in the external load on the secondary, to

the power taken by the primary. We can obtain

a formula for T? by means of the formulae (6) and (d) given above.

We have by (b)

l cos
-

x
- A cos

We have also by (d)

F2
= O^) F! - {(ni/w 2) r2 + (n^/wO /y (A cos^ - 4 cos

i/r )

(fls/fti) J^i^o COS ^r

=
(Wa/nj) F! - (na/wO Q^j COS^ + (Wi/'^a) ^'2^0 COS ^r ,

where Q = El + (njn^f i\.

Now since rj
= A 2V2/Wl ,

it follows that

r)
=

(1
- TT /FO {1

- Q W,/ F,
2 + (n,

2
/^

2
) ra Tf / Ffl.

In ordinary transformers (ihjn^f (r.2 TT / F/
2

) is negligible, and hence

*l
= (l-WJWJ(\-QW,IVf) ............... (e).

We have also, since 77 equals WJWlt

Thus when we are given W2 we can always find Wl ,
and hence

the efficiency of the transformer for a given secondary load.

Again,
W, -(W + TF2) =

If we plot out therefore the copper losses W-^ W T

as a function of the power Wl taken by the primary, we get a

It easily follows from (e) that the efficiency is a maximum
when

W, = FiVWft OT ^ cos^ =

and we have 77niax .

-
{1
-
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In the Ferranti transformer considered above Q equals 6'34

when the windings are warm. By (e) the efficiency

of this transformer when the primary is taking

12 kilowatts is given by

v = (1
-

240/12000) (1
- 6-34 x 12000/2400

2

)
= 0*967.

Its efficiency at this load is thus 967 per cent.

In a three kilowatt open iron circuit transformer Q is 53'4

ohms, Vl is 2400 and W is 121 watts. The load W, at which the

transformer has its maximum efficiency is

TF1
= 2400\/121/53'4

= 3-614 kilowatts.

The efficiency at this load

=
(1
-

(53-4 x 121)V2400)
2

= 93'4 per cent.

The following table shows the effect on the percentage

efficiency of a variation in the copper and iron losses in the

Ferranti transformer considered above.

Load in

Kilowatts
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They may also be written in the form

nf)N . di'jdt

where i' =

These equations suggest the following equivalent net-work.

Let us suppose that the primary T of the transformer has zero

resistance, and that an external resistance Jt^ is put in series with

it. We shall also suppose that the potential difference is applied
across the two in series. Connect a resistance (n-?ln<?)(rz + x), a

choking coil with self-induction (nfjn)N and a condenser with

capacity (n^jn^)K in series, and place this circuit as a shunt

across the primary terminals. The above equations show us that

the primary current will be equal to the current in Rl in magni-
tude and phase and that the secondary current will be equal to

W!/w2 times the current in the circuit shunting the transformer and

will be in opposition in phase to it.

If i be the current in the imaginary primary coil T, then

z'j
= i + i'

or n1 i'1 + w2 i2
= Wii.

If Ri be zero, i will obviously be constant, and hence as before we

find that

All the formulae given above can easily be proved by means of

this equivalent net-work.

Replacing a transformer by means of its equivalent net-work

is also useful in practical work, as it enables us to tell
Inductive and A

.

condenser at once what will happen in special cases, buppose
for example that we put an inductive coil N in series

with the secondary. Replacing the transformer by its equivalent

net-work we get Fig. 120. If r2 + # be very small, the net-work

will act simply like a choking coil, and so the primary current will

lag nearly ninety degrees behind the applied P.D. and the primary

and secondary currents will be nearly in opposition in phase. If

N were zero and r.2 + x very small, then the primary and secondary
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currents would be nearly in opposition in phase and the primary

current would be nearly in phase with the applied P.D.

wv '

Resonance
with
transformers.

Fig. 120. Equivalent net-work of a transformer on an inductive load, when

there is no magnetic leakage. T acts in the same way that the primary of the

transformer would if it had no resistance and the secondary was open circuited.

When we put a condenser load across the secondary terminals

we can see at once from the diagram that in certain

cases the primary current will be in advance of the

applied P.D. in phase. Hence the transformer as a

whole will act like a condenser, and if there is inductance in series

with it, we can have resonance and a dangerous rise of the potential

difference between certain parts of the circuit. In the early days
of electric lighting these resonance effects caused a great deal of

trouble to electrical engineers. We can also see that in certain

cases resonance of currents will take place in the net-work, a

very small primary current giving rise to a very large secondary

current.

It has to be remembered however that, when we have condensers

in the circuit, the current wave is generally considerably distorted

and alters in shape as we vary the capacity and resistance in the

circuit. Hence in this case diagrams got on the supposition that

the wave shape does not alter have only a limited use. The

following experiment illustrates this.

The primary circuit of a small transformer converting from 100

to 200 volts was connected across the hundred volt mains of a

supply company. Across the secondary terminals a condenser, of

capacity two microfarads, was placed in series with an adjustable

resistance. When this resistance was zero the current in the

primary was 0'67 ampere. As the resistance was increased the
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primary current diminished, attaining a minimum value of 0*62

ampere when R was 35 ohms. It then increased to a maximum
value of 0'915 ampere when R was 1500 ohms, and it finally

diminished to 0'74 ampere, its value on open circuit when R was

infinite. The secondary current however continually diminished

as R increased. The alteration in the shape of the current wave

was proved by the ratio of the volts at the condenser terminals to

the secondary current continually increasing as the resistance in

the circuit increased.
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CHAPTER X.

The transformation of polyphase currents by single phase transformers.

Primaries connected in four wire star. Primaries connected in three

wire star. Three phase transformer. Mesh to star. Mesh to mesh.

Three phase to two phase. Three phase to single phase. Three single

phase transformers connected in star. Boosting transformer. Reducing

the pressure. Increasing the pressure. Boosting. Variable induction

transformer. Compensator. Compensator for arc lamps. Current

direction indicator. References.

THE transformation of polyphase currents, from high pressure to

low pressure or vice versa, by means of stationary

transformers, is practically as simple as the corre-

sponding problem in single phase working. To
single phase effect the transformation we use either polyphasetransformers. l ^ x

transformers or groups of three single phase trans-

formers. In either case they may be connected in star or in

mesh. We shall first consider the case of three single phase

transformers, connected in mesh (Fig. 121). The three primaries

are connected in series at P,, P2 and P3) and the three secondaries

at Slt S2 and 83 . P1? P2 and P3 are connected with the primary

system of mains at 1, 2 and 3, and 8lt S2 and S3 with the secondary

system at 1', 2' and 3'.

If the three transformers have the same ratio of transforma-

tion, then, neglecting magnetic leakage, we can write,

1
dt

' 2
dt

'
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where elt 61, e^' are the potentials of the primary mains, and

Vi, v-S and V are the applied potential differences. The secondary

potential differences and the currents in the secondary windings
are denoted by v2 ,

v2

' and v2", and *2 ,
iz

'

and i'2

"
respectively.

Fig. 121. Transforming three phase currents by means of three

single phase transformers.

If the resistances of the primary and secondary coils of the

transformers can be neglected, we have

v2 = - (wa/Wi) 0i , W = -
(wa/Wi) <, and v2

" = -
(n 2/n,) v".

These equations show that the waves of secondary voltage are

exactly similar to the primary waves, but differ from them in

phase by 180. Since v2 + v2
' + v.2

"
is always zero, it follows that

the vectors of the secondary voltages form a triangle. The sides

of this triangle (Fig. 122) are equal to F2 ,
V2

'

and F2

"
respectively,

and the supplements of its angles give the phase differences

between the secondary voltages. We see that the sides of this

triangle equal the sides of the primary voltage triangle multiplied

by Wa/Wj, when the resistances of the transformer windings can be

neglected.
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When the applied potential difference follows the harmonic

law, the shape of the wave of the magnetising current will be

similar to that of the curve shown in Fig. 116. This curve has

a large third harmonic. If the P.D. wave, therefore, between each

pair of mains is sine shaped, the sum of the magnetising currents

ii + h' + i", .round the mesh, will not be zero, but will equal three

times the sum of the harmonic terms, in the Fourier series repre-

senting the current, whose frequencies are given by 3(2i+l)/,

F"

Fig. 122. Transforming three phase currents by means of three single phase

transformers. The sides of this triangle equal the secondary voltages.

where n is zero or a positive integer. In the primary mesh,

therefore, we have at all loads a local current component which,

since the third harmonic is much the most important, is practically

sine shaped and has a frequency 3/.

If the resistances of the primary coils are negligible, the

secondary potential differences will be of the same shape as the

primary potential differences, provided that the magnetic leakage

is negligible, the secondary coils mesh-connected, and the secondary

loads balanced and non-inductive. The secondary currents, in this

case, will be of the same shape as the applied P.D. waves. We see

that the additional components of the primary current, necessary

to prevent these secondary currents producing a flux which would

upset the balance of the back and the applied electromotive forces,

must have the same shape as the applied P.D. waves and will be
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in phase with them. As the balanced load, therefore, on the

secondary increases, the shape of the primary currents becomes

more like the shape of the applied potential difference waves, and

the power factor consequently approaches unity. This effect also

ensues when the secondaries are connected either in three wire or

four wire star, provided that the load is also connected in three

wire or four wire star. If, however, when the secondary coils are

connected in star, the load is connected in mesh, the secondary
P.D. waves will not be in opposition in phase and will not, in

general, be similar to the applied P.D. waves. Thus the additional

components of the primary current due to the load will differ in

phase and, in general, also, in shape from the primary P.D. wave,

and the power factor will therefore be low (see Vol. I, Chap. vi).

Hence, we see that, when the primaries are in mesh and the

secondaries are in star, the secondary load must not be mesh-

connected.

Let us now consider three single phase transformers with their

primaries star-connected, and let us suppose that
Primaries r

connected in their common junction is connected, either through
the earth or through the '

neutral main/ with the

common junction of the armature windings of the generator, so

that we have a four wire star system. If the waves of P.D. between

the mains and the common junction be sine shaped, the magnet-

ising currents will be shaped as in Fig. 116, and the current in

the neutral wire ij + ii + ii" will be practically sine shaped and

have a frequency 3/. Whatever the shape of the applied P.D.

waves, the current in the neutral wire will be represented by

terms the frequencies of which are given by 3 (2?i + I)/. When
the secondary coils and load are both star-connected, then, as the

load increases, the shape of the primary current wave becomes

more like that of the applied P.D. wave and the time-lag between

the two waves diminishes. The primary power factor, therefore,

will be high when the transformer is loaded. If, however, the

secondary windings be mesh-connected and the load be star-

connected, the secondary current waves and, therefore, also the

corresponding components of the primary current waves will

neither be in phase with, nor, as a rule, will they be similar to,
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the applied P.D. waves. Hence, the power factor will be low, and

thus this connection must not be used.

The case when the primary coils are connected in three wire

star, that is, when their common junction is insulated,

To^ected in ^s interesting, and deserves careful consideration.

three wire ^-^ f ^ three currents flowing into the
star.

common junction must be zero at every instant.

From the symmetry of the arrangement, the time-lag between

any two of the three currents must be one-third of a period, and,

since the sum of the three must be zero, the Fourier series for

each must not contain terms whose frequencies are given by

3(2?i + l)/ The currents, therefore, cannot be shaped like the

curve in Fig. 116, since this curve has a large harmonic of

frequency 3/. It follows that the P.D. waves between the mains

and the centre of the star cannot be sine shaped.

Let us suppose that the instantaneous value of the P.D. between

two of the mains is given by F(t), and let ty(t) and i/r( + T/3)

give the values of the potential differences between these two

mains and the centre of a star, the arms of which are non-inductive

and equal. We must have

7(0 -

where v1<a
. and v.2 .x are the voltages across the primary terminals

of two of the transformers. Now, when we write t + T/B for

t in VM we must get v2.x . It follows, therefore, that we may
write

where % (32) is a periodic alternating function of period T/3.

Hence, if the star wave ^r (t) produce a magnetising current

wave i\, which has harmonics of frequency 3 (2n 4- 1)/", the shape
of the applied wave will assume a form

-vjr (t) + ^ (3), which gives
a magnetising current wave that is free from these harmonics.

Hence, when the common junction of the three primary windings
is disconnected from the fourth wire, the star-wave form will

generally change, and this change will always increase the effective

value of the star voltage, although the mesh voltages remain the
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same. It is worth noticing that this proves that the mesh and

star voltages cannot, in general, be represented by the sides of

an equilateral triangle and the three lines joining the angular

points to the centre. They can be represented, however, by the

edges of a tetrahedron. F. J. Dykes has shown that, in some

cases, the star voltage, on open circuit, rises more than ten per
cent, when the central connection is insulated.

In Fig. 123, m is an oscillograph record of the mesh voltage,

and the curves, S and S, are oscillograph records of the corre-

sponding star voltages on open circuit, the secondary coils being
star-connected. It is interesting to notice that the general

Fig. 123. Three single phase transformers connected in star. The curve m
gives the shape of the mesh wave and the curves S, S give the shape of the star

waves.

characteristics of the waves 8 and 8 are not unlike the general

characteristic of the P.D. wave (Fig. 117) necessary to produce
a sine wave of magnetising current. During an appreciable

fraction of the first quarter of a period, the curve is approximately

parallel to the zero line, and during the second quarter of a period

it rises and falls rapidly.

When the mesh wave is distorted as in Fig. 124 it will be seen

that the general shape of the star wave 8 still remains the same.

The curves S and S, in Figs. 123 and 124, are shown with a time-

lag of 60 degrees between them, one of them giving the voltage

from one main to the centre of the star, and the other giving the

voltage from the centre of the star to the other main. Thus,
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if we add the ordinates of the S, S curves together, we should

get the m curve. For both figures the author is indebted to

F. J. Dykes.
If the secondary coils be mesh-connected, it is found that there

is practically no change in the shape of the primary star waves

when the centre of the star is disconnected from the neutral wire.

Fig. 124. Three single phase transformers connected in star
; m is the

mesh wave and S, S are the corresponding star waves.

There is, however, a local current, the harmonics of which have

frequencies 3 (2n + 1)/, flowing in the secondary mesh; the

magnetising effect of this current and of the primary current,

which, of course, can contain no harmonics whose frequencies are

3 (2/i + I)/, practically produce the four wire star wave.

The design of a simple form of three phase transformer is

Three phase indicated in Fig. 125. Thin iron plates, with two
transformer.

rectangular holes stamped out of them, are placed

over one another and wound with six coils as in the figure. We
shall first consider the case when both primary and secondary

windings are connected in star and when the centre of the star is

insulated.

R. II. 18
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Let 61 be the potential difference between P (Fig. 125) and

the common junction of the primary windings. If there is no

magnetic leakage, our equations are

d<b
el
=

where e2 is the potential difference between S and the common

Fig. 125. Three phase transformer, primary and secondary circuits having
star windings.

junction of the secondary windings. When R& is negligible, we

have

In a similar way we can find equations for e2
'

and e/'. These

equations are identical in form with the corresponding equations

for a single phase transformer, and can be discussed in the same

way. When, in addition, the term r2 ia can be neglected, we see
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that the secondary waves are in exact opposition in phase to the

primary, and that the ratio of their effective values is njn-^.

The above equations show us that if el} e and e" are similar

and equal waves, then, on the above assumptions, e2 ,
e2 and e"

will also be equal and similar. It also follows that <, <', <", the

magnetic fluxes embraced by the three currents, will each follow

the same law and be equal in magnitude; consequently, since

their sum is always zero when there is no leakage, the phase
difference between any two of them will be 120 degrees. Let

47r(P1.o/10 be the reluctance of each of the magnetic circuits

PSS'P' and P'S'S"P" (Fig. 125). Then, if the reluctance of the

I'rcuit

PSS"P" be 47r(R1 .3/10, our magnetic equations are

<#>
= HI ft

-
itO/flta

-
wi ft"

-
i,

f = n, ft'
-

*T)/<Ri. a
-

n, ft
- i

f = n, ft"
-

iO/flta
-

n, ft'
-

As the paths of the magnetic lines are in iron, the quantities

(Ri-2 and (Ri.3 are not constant, as their values depend on the

magnetising forces. If we assume that they are constant, and if

the three cores (Fig. 125) have equal cross-sectional areas, (Rj.g will

be greater than (ft^, and so the magnetising current in the middle

core will be less than in the outer cores and the arrangement will

be unsymmetrical. If, however, we design the transformer so that

dta equals (R1>2 when the applied magnetic forces are the same,
we must make the section of the middle core less than that of

either of the outer cores. In this case the flux density and con-

sequently the hysteresis and eddy current losses will be greater
in it, and this will again upset the balance on the primary side

of the transformer. It is practically impossible, therefore, to make
this type of transformer so that the currents and voltages will be

absolutely symmetrical.

When the resistances of the primary and secondary coils are

negligible, the secondary mesh voltages v2 ,
v2 and v2

"
can be written

down easily. We have

v.2
= e2

- e.2

f =
(?^2/O (e^

- et) =-(n2/nl)v1 ,

v.2

" = e2
" -e2

= (njnj (e,
-

e") = -
(njnj v".

182
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Thus the secondary mesh voltages are in opposition in phase

to the primary mesh voltages, and the ratio of their effective

values is njn^
One curious effect noticed with this type of transformer is the

large increase in the primary magnetising currents when the

centre of the primary star is connected with the neutral main.

There are now harmonics of frequency 3 (2w + I)/ in the magnet-

ising waves, and as these harmonic currents all produce fluxes in

phase with one another, the return path for the corresponding

flux must be through the air, and thus the leakage is excessive.

Owing to the high reluctance of the path of this leakage flux the

corresponding requisite magnetising currents will be large, and

the harmonic currents of frequency 3 (2?i + I)/, more particularly

the harmonic current of triple frequency, will have appreciable

amplitudes. This is found to be the case in practice.

The oscillograph records shown in Figs. 126 and 127 were

obtained by F. J. Dykes from a transformer of this type with

the three cores of equal sectional area. Fig. 126 gives the

magnetising current of the middle core when the centre of the

primary star is insulated. The effective value of this current was

only 0*28 ampere. When the centre of the primary star was

connected with the neutral main, the current assumed the shape

0-28amp.

Fig. 126. Oscillograph record of the magnetising current in the winding of the

middle core of a three phase transformer when the common junction of the primary

windings is insulated.

shown in Fig. 127 and its effective value rose to 2'4 amperes.
If a fourth core were provided, this rise in the value of the

magnetising current would be prevented, but then the regulation

afforded by a three phase transformer would be impaired seriously,
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as any want of balance in the secondary load would send a flux of

fundamental frequency through the fourth core.

2-4amp.

Fig. 127. Oscillograph record of the magnetising current when the

common junction is connected with the neutral wire.

In the three phase transformer shown in Fig. 128, the primary

windings are connected in mesh and the secondary
in star. Let vl} Vi and v" be the potential differences

Mesh to star.

P'

Fig. 128. Three phase transformer. Primary with mesh winding and

secondary with star winding.
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between the points P and P', P' and P"',
and P' and P respectively.

Let also
</>, </>'

and
</>"

be the magnetic fluxes embraced by the

windings between the same three points. Then we have

where Rl} R and .#/' are the resistances of the primary windings.
Now v-L + v-t + v" is always zero. Therefore, when the primary
resistances are negligible,

dt dt

Let v2 be the potential difference between the secondary
terminals S and S' (Fig. 128), then we have

- v2
= r2 i2

-r& + nz
-^ (</>

-
</>")

- n2
-^

(<'
-

<).

When the resistances of the secondary windings are negligible, we

can therefore write

Hence, the secondary mesh voltages are in exact opposition in

phase to the primary mesh voltages, and the ratio of transformation

is r^/Swa- When the effective values of the primary potential

differences are all equal to one another, the secondary potential

differences will also be equal. The effective value of the voltage

between 8 and the centre point E of the secondary windings, in

this case, will be 1/V3 times the voltage between S and S'. It

will, therefore, be equal to \/3 (wa/Wi) times the voltage between P
and P'. The effective value of the flux in the radial limbs of the

transformer is thus v'3 times its value in the circumference of the

stampings.

In Fig. 129 both the primary and the secondary windings of

the three phase transformer are connected in mesh.
Mesh to mesh. . .

With the same notation as in the preceding para-
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graph and neglecting the resistances of the primary and the

secondary windings, we have

and thus

Fig. 129. Three phase transformer. The primary and secondary windings

are both connected in mesh.

When the effective values of the primary potential differences are

all equal, then

Hence the ratio of transformation is Wi/(/i2 A/3).

The methods of transforming three phase to two phase

Three phase currents or vice versa by means of special trans-
to two phase. formers were explained in Vol. I, Chap. XIII.

These transformations could also be made by means of three

single phase transformers. If the potential difference across any
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two of the three phase mains be F, it is necessary that two

of the transformers be wound for an applied P.D. equal to F/2

and the third for an applied P.D. equal to VS F/2. The

primaries of the two equal transformers are connected in series

between the mains 1 and 2, and their common junction
is connected to the main 3 through the primary of the

other transformer. If the ratio of transformation of the two

equal transformers be n-^n^ and that of the third transformer

V
/

3??1/(2^2), the secondaries of the two equal transformers

connected in series will give a secondary voltage n z V/nlf and

the secondary of the third transformer will give a secondary

voltage 2n2/(\/3w1 ) x V3F/2, that is, n2V/n l} which is in quadrature

with the other secondary voltage. The same arrangement can

also be used to transform two phase to three phase currents.

A single phase circuit may be supplied from any two of the

secondary terminals of a three phase transformer,

to single When, however, the single phase circuit is loaded, the

potential drop at the secondary terminals is large and

the heating of one of the secondary and one of the primary

windings is excessive. One method which has been proposed of

getting over this difficulty is to connect the secondary windings

as follows. Let S&, Si'Sz

' and S"S2

"
be the terminals of the

three secondary windings, then, if we join S2 and $/, and Ss

'

and Si", so that we have two of the windings in series and the

third in
'

cross series
'

with them, we can get single phase currents

between the terminals Si and Si".

Neglecting the primary resistances, we have, if the primaries

are connected in mesh,

d<f>-

dt
'

Therefore + + _ a
dt dt dt
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Again, if v2 be the P.D. between Si and Si", we get

= 37'oi., + Vo

281

-J- 4- ??,
-

or ar
-

,

at

and thus

and 2 -V =

If we neglect 3?*24 in comparison with va ,
we get

Hence we see that F2 is twice the P.D. between the terminals

of one of the secondary coils. Also, if we suppose that the

magnetising currents of the primary coils are negligible, we

must have, at every instant, the currents in the primaries equal

and opposite to the currents in the secondaries. Since the same

current flows in each of the secondaries, all the primary currents

must be equal in magnitude, two of them flowing in the same

direction round the mesh (Fig. 130) and the third flowing in the

opposite direction. The currents will also be in step with one

another, and, since the current in the branch 2 3 equals the current

in the branch 3 1, there will be no current in the main 3. Hence,

the currents for this transformer will all be supplied by the mains

1 and 2. Although all the primary coils are equally heated, the

Fig. 130. Transforming three phase currents to single phase currents.

The currents in the primary mains.

load is only on one pair of the supply mains. This method,

therefore, does not distribute the load between the primary mains,

unless three of these transformers are used, in which case it would

be better to use three single phase transformers.
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The case of three single phase transformers connected in star

with their secondaries connected two in series and

ne in cross series (Fig. 131) is instructive. P, P'

an(^ P"> tne PrimarJ terminals of the transformers,

are connected with the three phase mains and their

three other terminals are joined together. The single phase

P"

s"

Fig. 131. Three single phase transformers. The primaries are connected in

star and the secondaries are connected two in series and one in cross series.

Single phase currents from the terminals, S and S".

currents are got from S and S". The problem can be solved

analytically without difficulty. The solution shows that the

arrangement acts like a transformer with excessive magnetic

leakage. The load on the primary also is not balanced, and so

the arrangement is of very little practical use.

If the primary of a single phase transformer is connected with

Boosting
the supply mains, we get a certain pressure F2 across

transformer, ^he secondary terminals. If we now join one of the

primary terminals and one of the secondary terminals together,

by means of a wire, we get another pressure between the other

primary and the other secondary terminal, and we can take

electric energy from these two terminals. When a transformer

is used in this fashion it is called an auto-transformer or a

boosting transformer, or simply a booster, and the pressure can

be boosted positively or negatively so that the pressure can be

greater or less than the applied potential difference, depending
on which of the primary and secondary terminals are connected
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by the conducting link. To a first approximation we can regard

the primary as a battery having a voltage V1 and the secondary as

a battery having a voltage F2 . When they are connected in

series the boosted voltage is Vl V^ and when they are connected

in opposition or cross series the voltage is V1

In

Reducing the

pressure.

Fig. 132 the connections are shown of a transformer

connected as a negative booster, the pressure in the

secondary circuit X being less than the applied

pressure. ADB is the primary coil of the transformer which is

connected between the supply mains, and AC is the secondary

coil. The secondary load is placed across B and C. In this case,

Fig. 132. Reducing the pressure by using a transformer as a negative booster.

when the resistance X is very great, the currents in both the

divided circuits on the ring tend "to magnetise the core in the

same direction. If eBA denote the P.D. between B and A, we have

eBA = R^ + n^/dt,

where Rl
is the resistance and n x the number of turns of the

winding ADB. If the effective value of the P.D. between B and

A be maintained constant, and if RiA l be negligible compared
with it, we see that the effective value of n^d^jdt is practically

constant at all loads. To a first approximation, therefore, we may
assume that the maximum value of the flux is constant at all

loads, and that n^ + ?i2i2 is the same function of the time at all
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loads, where iz is the current and nz the number of turns in the

coil AC. If i be the current in ADB when CB is on open

circuit, we have nfa + ?? 2*2
= Wi* , approximately, at all loads. At

full load the effective value A* of L is much greater than A .

We see, therefore, that at full load ^ and i2 must differ in phase

by nearly 180.

We also have

Hence eBC =R^ r%i2 -f (ni n2 ) d(f>/dt

=
(??! 7i2 ) d<f)/dt, approximately.

The effective value of the potential difference between B and

C is therefore less than that between A and B which we suppose
to be kept constant. Now, as the resistance X is diminished, the

current in AC is increased, more lines of induction thread the

core ADB and the induced electromotive force in the primary is

in opposition to the applied potential difference, so that the current

in the coil ADB continues to diminish until the electromotive

force generated by the varying flux in the core gets greater
than the applied potential difference. The primary current then

begins to increase again. The current in ADB is now in opposition

to the applied potential difference, and the coil ADB is giving

energy to the other branches of the circuit being actuated by the

coil AC.

The action of a negative booster can readily be understood

from a diagram (Fig. 133). Let us first consider the case when X
is infinite. The triangle OB D is the primary voltage triangle of

the transformer. OD represents the applied potential difference

in magnitude and phase. BQD represents the back electromotive

force set up by the variation of the flux of induction in the core,

and OB is RiA ,
where A Q is the magnetising current. Now, if

there is no magnetic leakage, the E.M.F. caused by the flux in AC
will equal (w2/Wi) DB ,

where % and n2 are the number of turns in

ADB and AC respectively (Fig. 132). Measure DC equal to

(riz/n^DBo, and join OC ,
then OG' gives the boosted voltage on

open circuit.

Let a current now flow in the external circuit X
;
the resultant

magnetising turns acting on the core are increased and the flux of
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induction is therefore increased. Let B B (Fig.

increase of the back electromotive force due to

and make DC equal to (njn?) DB. Then, OC
is the pressure across X. Let Rlt r2 and A lt A 2

be the resistances and currents in the primary
and secondary coils of the transformer. Then

OB equals R lA l and OC equals (r2+ #) A 2) where

x is the resistance of the non-inductive load.

OB and OC give the phases of the currents

A l and A% respectively, and we see that when

the load is heavy they are practically in op-

position in phase. The phase of the resultant

ampere turns must always be very nearly co-

incident with OBQ . The magnitude of this

resultant, however, does not remain constant

but slightly increases.

Since OB gives approximately the phase
of the resultant ampere turns, we have

n^ Sin (fa
-

fa) = ?124 2 sill (fa
~

fa),

where fa, fa and fa are the angles B OD, BOD
and COD respectively. Also, since fa is small

and the resultant ampere turns are approxi-

mately H^AQ, we have

HiAi cos fa + n 2A 2
= ^i-4o cos ^o-

We see that when A z is greater than

133) be the small

the increased flux

fa must be greater than 90.

Again, by construction,

Fig. 133. Voltage

diagram for a nega-

tive booster. OD is

the applied P.D. and

OC is the reduced

pressure.

and therefore

{(H! fto)/X) (Vl RlA l cos fa) = F2 4- r2A 2 RiA l cos fa.

Hence, we have

F2
= [<X

-
n^/n,} V, - [r, + (n2/n^ R,} A 2 ,

approximately.
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The connections of a transformer when used as a booster are

shown in Fig. 134. It will be seen that the currents
Increasing the

pressure. tend to magnetise the core in opposite directions.

In Fig. 135, OD is the applied potential difference,

B D the back electromotive force in the primary coil, and OB
is

Fig. 134. Method of winding a boosting transformer.

If we make DC equal to (njn^) DB , OCQ will give the boosted

voltage, on open circuit, in magnitude and phase. When the

resistance X is very large and non-inductive, OC the vector of

the boosted voltage is very nearly coincident with OCQ ,
and

OB which represents R^A^ is very nearly coincident with OB .

Since there is a demagnetising effect CB must be less than (7 B
>

but, if there is no magnetic leakage, DC is equal to (njn^ DB.

In practice, the diminution of the flux in the core is very

slight, and so, to a first approximation, we can suppose that the

flux is constant at all loads. It has to be remembered that in

the ordinary transformer OB is generally less than the hundredth

part of OD even at full load.

Assuming that the resultant magnetising turns are repre-

sented in phase by OB and that they are equal to n^ at all

loads, we get
T^A! sin (-^o

-
T/TJ)

= n^ sin (^ + ^2),

and since
-\^2

is very small

n COS U.A 2
= n^Q COS ir .
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We also have

OT-{(*,.

and therefore,

F2 + r.2A - R1A l cos

=
{(HI +

and thus,

{
Vl
- #A cos fa],

x
-

[r,

approximately.
The formulae for the voltage drop on the

secondary of a negative booster, and for the

voltage drop on the secondary of a transformer,

having the same ratio of transformation

Co

rC

and the same primary and secondary resistances

Rl and r2 respectively, are

F2
=

{(n,
-

n^/n,} V, - {r, + (njntf R,} A 2

and

"^2
= {Oh

-
n^/ni] F! - [r.2 + (Oi

-
n^/n^

2 R^ A z .

When n2 is less than r^/2, the negative booster

gives the smaller drop. Hence, if we wish to

reduce the pressure by less than fifty per cent.,

it is advisable to use a negative booster rather

than a transformer. Similarly if we wish to raise

the pressure by less than fifty per cent, a booster F
-

lgg Volt

is preferable to a transformer. age diagram for a

booster. OD is

A useful method of varying the pressure on the applied P.D.

supply mains is illustrated in Figs,

induction 136 and 137. The variable induc-

tion transformer consists of a lamin-

ated iron ring with a secondary coil wound round it, half of the

coil being wound in one direction and half in the other. One end

of this coil is connected with one primary main and the other

is a secondary terminal, the other secondary terminal being con-

nected directly with the primary main. The primary is wound on

a bundle of iron stampings shaped as in the figure, and is capable

and OC is the

boosted pressure.
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of rotation round an axis coincident with the axis of the cylin-

drical ring. In the position shown in Fig. 136 both the primary
and secondary currents tend to magnetise the halves of the ring

Fig. 136. Variable Induction Transformer. Position of rotating primary
when the boosted pressure between S and 8' is a maximum.

in the same direction. The induced pressure V in the main

winding between P and S is practically in opposition in phase to

p' s'

Fig. 137. Variable induction transformer. Position of rotating primary when

the pressure between S and S' equals the pressure between P and P'.

the pressure V between P and P'. The pressure between $ and

$', therefore, must be V + V. Since the applied P.D. on the
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primary side is maintained constant, the flux must be approxi-

mately constant, and hence we can easily write down formulae for

the boosted voltage. In this case the reluctance of the magnetic
circuit is considerable owing to the air-gaps, and the magnetising
current of the primary is greater than for the closed iron circuit

transformer.

If we rotate the primary through ninety degrees (Fig. 137) it

will be seen from the figure that the induced electromotive forces

neutralise one another, and so the pressure between S and S f

equals the pressure between P and P'. If we rotate it through
another ninety degrees, it will act as a negative booster and

the pressure between $ and S' will be less than that between

P and P'.

Compensator.

The connections of an iron ring wound as a compensator are

shown in Fig. 138. A and C are the terminals for

the applied voltage, and the secondary loads are

placed between various terminals connected with points on the

wire coiled round the ring. Consider one of these circuits AB,

Fig. 138. Compensator. A and C are the terminals for the applied P.O.

A and B are the secondary terminals.

for example, in Fig. 138, and suppose that there are n^ turns in

the coil AB, and n^ turns in the coil BG, so that there are ^ + 11^

turns of wire round the ring. If Vt be the effective value of

the potential difference between A and C, na VJ(n^ + ?i2) will be

R. II. 19
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the potential difference, on open circuit, between A and B. We
shall now find a formula to show how this voltage is maintained

as the load in the circuit X is increased, and compare the

result with that obtained when we wind the ring as an ordinary

transformer.

Let e and e% be the potential differences between A and (7,

and between A and B respectively. Let i be the current in X,
iz the current in AB, and ^ the current in BC, which will also

be the current in the mains. Let r be the resistance of one turn

of the winding so that n2r and n^r are the resistances of AB and

BG respectively. Our equations are

/ . d(j>\

(
ni +

di)'

(
n; + i)'

and i = iz + i.

Thus xi = (wa/rii) (0i ad) n 2ri,

and therefore i = (a/i) ^/[a? {(% + Wj)/^) + w2r],

When, therefore, there is no magnetic leakage, i is always in phase

with the applied potential difference. Hence

F2 (fa + WaVwi}
=

(WB/WI) Fx
- ^2r^,

and thus F2
= {^/(^ + n2)}

Fx (rijTia/^ + T^)} rA

where r2 is the resistance of the coil AB.

If we had wound the same ring as a transformer, having n^ + n2

turns on the primary and nz turns on the secondary, with wire

of the same size as for the compensator so that more copper
would be required, then for the secondary voltage of the trans-

former we should have

Fa
= K/K + * 2)} F, - [ra + {n,j(n, + n2)}

2

12J ^L

=
[nj(ni + n2)} V, - {(n, + 2w8)/(n1 + O} r2A ...... (6).

Comparing (a) with (6), we see that the compensator regulates

better than the transformer.
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In Fig. 139, let the phases of Vlt A^ and A.2 ,
be represented

by OVlt OK and OM respectively, and let OK and ON represent

also the magnitudes of A t and A. Now,

Fig. 139. Diagram of

the currents in a com-

pensator.

snce

it follows, by the triangle of vectors, that

KM must represent A in magnitude and

phase. Hence KM must be parallel to OVl .

Since the applied potential difference is

maintained constant, the flux of induction

in the ring will also be constant if the

resistances of the windings are negligible.

Therefore, n^+n^, the resultant magnet-

ising turns, must be equal to n&Q. The

vector value of this resultant must also be

constant in magnitude and direction. To

find this resultant we have to find the

resultant of n^ . OK and w2 . OM in Fig. 139.

Divide KM in L so that n^ . KL equals

?? 2 . ML. By the triangle of vectors we can

replace H! . OK by HJ. . OL and n^LK. We
can also replace nz . OM by n2 . OL and

n^ . LM. But by construction ?i
a . LK equals ?? 2 . ML, and since

they are acting in opposite directions they balance. Hence OL

represents the resultant magnetising turns in phase, and when

there is no load on the secondary we see that OL equals A .

Let the angles V^OK and V^OM be fa and fa respectively,

and let the angle V^OL equal fa, then, resolving along OVl ,

we have

n^Ai COS fa + U2A 2 COS fa = (?lx + U2) A COS ^r .

Also LM =
{^i/(^i 4- w 2)J A, and LK =

{ 2/(^i + wa)j A.

We see from Fig. 139 that as A increases, A(OK in the

figure) continually increases. ^1 2 (^^) n the other hand at first

diminishes to a minimum value. It is then in quadrature with Vlf

It now begins to increase and is ultimately nearly in opposition

to I
7
!, showing that the coil AB is acting like the secondary of a

transformer which has BC for its primary.

192
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Let us consider next the case of a compensator with n equal

secondary circuits, and suppose that there are non-inductive

resistances, xl ,
#2 ,

... xnt placed across the terminals. If e be the

value of the applied potential difference, and e1} e2) . . .
,
be the values

of the P.D.s across the secondary circuits, we have

e = ^ + 2 +...+ en ,

en = njn + n = acnn ,

where r is the %th part of the resistance of one of the coils, and

il9 4, ... are the currents in the various coils.

We have ^ + i^ = i2 + i2
' =

. . .
= in + tw'.

Therefore ij i2 = i2
'

i^, etc.

We also have

aft' x^ = n^r fa i2)
= n-p (i'/ iV),

and thus

(x, + R) iS = (a?, + R) i*
=

(a?8 + ^) ij=*...= k,

where ^ equals ^?\

Now e1 + e.2 -{-... + en = x^ + ^V + . . .
=

e,

and therefore k% {xl(x + R)} = e.

Hence Fx
=

and the values of F2 ,
F3 ,

... Fn ,
can be written down by sym-

metry. We see that when there is no magnetic leakage Vl} F2 ,
...

are all in phase with F.

If there are only two sections, V1 + F2 will be equal to F,

and Fj will be greater than F2 ,
when xl is greater than x2 . The

above equations show that the smaller the value of R the better

will be the regulation. Compensators are very useful in practice

for subdividing high pressure service.

To illustrate the regulating power of compensators, the

compensator following experiment was made on a small com-
for arc lamps, pensator for subdividing a one hundred volt service

into two fifty volt circuits for use with arc lamps. The weight of
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the compensator complete was just under 30 pounds. When the

pressure of the supply was 104 volts, the frequency being 84,

the magnetising current was 0'33 of an ampere. The effective

value of the potential difference across either AB or EC (Fig. 140)
was 52 volts in this case. When the load between B and G was

Fig. 140. Compensator for subdividing a 100 volt service.

taking 30 amperes more than that between A and B, the P.D.

across BC was 50, and across BA it was 54 volts. Therefore for

small differences in the load this compensator regulated extremely
well. When a current of 40 amperes was flowing in one secondary
circuit and the other was open, the current in the main was 20

amperes, and this was practically its value in each half of .the

ring, the currents in the ring windings being practically in

opposition in phase. We see that in the loaded section we have

a circulating local current of 20 amperes superposed on the main

current of 20 amperes.

In Central Stations where alternators are running in parallel,

a transformer of special design is sometimes used to

indicate the direction in which a particular current

is flowing. One form of current direction indicator

is shown in Fig. 141. The winding round the two outside limbs

of the transformer is connected to the bus bars, and the winding
on the inside limb is in series with the alternator. When the

alternator is supplying current to the mains, the currents in

Current
direction

indicator.
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the left and middle windings magnetise the core embraced by
the windings connected to the green lamp and so it lights up.

In this case the core embraced by the windings connected to the

Fig. 141. Current direction indicator or discriminating transformer. When
the red lamp lights the generator is receiving current from the bus bars instead of

supplying current to the bus bars.

red lamp is only feebly magnetised. If, however, the current in

the middle winding reverses in direction, the red lamp will light

up and the green lamp go out. The arrow heads indicate that

this is the case illustrated in the figure.
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WE shall now investigate the effect of magnetic leakage on the

Magnetic working of the alternating current transformer. Let

us consider the case of a constant pressure single

phase transformer having % turns in the primary coil and n2 turns

in the secondary. In practice, the magnetic lines due to the

primary and secondary currents are not necessarily linked with all

the primary and all the secondary turns. When we are dealing
with the constant pressure transformer the error introduced by
this assumption is not large, and, to a first approximation, the

theory is in agreement with experiment. In practical work,

however, a second approximation is necessary. In calculating, for

instance, the difference of the pressures between the secondary
terminals at no load and full load, an error of only one per cent,

in the determination of V2 may introduce an error of fifty per
cent, into the calculated value of this pressure drop. We also

need to know the various causes which produce this drop.
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If
(f>m denote the flux linked with the primary and secondary

coils, we can write

where (P is a variable quantity which, when we neglect the effects

of eddy currents, can be determined from the hysteresis loop of

the iron in the core taken between the maximum and minimum

magnetising forces to which it is subjected. In Chap. IX we wrote

n^^a/dt for the back electromotive force due to the leakage flux

from the primary, where < a is the mean value per turn of the

primary leakage flux. If we suppose that the copper of the primary
has infinite conductivity, so that there are no lines of force in the

copper itself and that none of the leakage lines pass into the iron

or cause eddy currents, this expression is strictly correct. In

practice it is only approximately true. If the primary consist of

a thick solid copper conductor, so that many of the lines of force

embrace only a fraction of the current and the eddy current losses

are appreciable, the error due to our assumption may be large.

In most practical cases however the error is small, and we shall

write n^/ffla for
<J>a ,

where (Ra is a constant.

By Ohm's law the equation to determine the primary
current is

*-u +*+* ...............a).

In a similar way we can show that the equation for the secondary
current is

where ez is the secondary P.D. and r2 is the resistance of the

secondary winding.

When the secondary is on open circuit, i2 and fa are both zero,

and therefore
Secondary on

open circuit.

Hence by (1)

ee^R^ + n .................. (3).
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If el and e2 were in opposition in phase, the ratio of el to e2 would

be constant (see Vol. I, Chapter vi). The above equation shows

that this can only be rigorously true when R^ is zero and there is

either no primary leakage or the ratio of
<f>m to

(j)a is constant.

When the resistance of the primary can be neglected, we have

d

dt

and therefore, <f>m 4-
<j)a is independent of the secondary load and

only depends on the shape and the magnitude of the wave of the

applied potential difference. Hence also, by the differential cal-

culus, < w , + (f>a has a turning value, that is, a maximum or a

minimum value, when el vanishes. If we neglect the effects of

eddy currents in the core, then, on open circuit, <f>m has a

maximum value when i\ has a maximum value. If we make the

assumption that < a is in a constant ratio to ilt (>a will have a

maximum value when i: has its maximum value. We see, there-

fore, that at the instant when the magnetising current of the

transformer has a maximum value, the applied potential difference

is zero. Similarly the applied potential difference vanishes when

the magnetising current has a minimum value.

It also follows that, when J^ is negligible e2 vanishes with el}

for, at this instant the flux in the iron has a turning value. The

time-lag between the primary and secondary voltages when the

secondary is on open circuit is therefore 180 degrees. The phase
difference between them, however, is not 180 degrees unless the

ratio of < m to
<j)a is constant, for the shapes of their waves are

different in other cases.

When the secondary of the transformer has a non-inductive

Loaded trans-
10ad

'
WG ^ frOm ^ ^ <

2>

formen

^e =Ri -~ri n
d(f>a n

d<̂ b

n2 n2 dt dt

At the instant when d is zero we have, when R^ is negligible,

d(f>a d(j>i

In a constant pressure transformer the maximum values of the

quantities on the right-hand side of this equation are small

compared with the maximum value of e2 . Hence, when d is
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zero, e.2 and consequently also i'2 ,
since we are considering a non-

inductive load, is small. But, when el is zero, <$>m + </> ffl
has a

turning value and hence also the resultant magnetising turns

must have a turning value. The positive turning value must be

equal to ^/o, since the maximum value of
</>m + (f>a is the same at

all loads. At this instant therefore ^ must be practically equal
to its maximum value J on open circuit, since i2 is small. The

O

Fig. 142. The primary current waves of a Gaulard transformer at various non-

inductive loads when el is the shape of the applied potential difference wave.

A and B are approximately the maximum and minimum heights of the magnetising

current wave ? .

curves in Fig. 142 show the applied potential difference wave and

the waves of the primary current for various non-inductive loads

on the secondary of a transformer. The curves were drawn by
the ondograph of Hospitalier. It will be seen that all the primary
current curves pass approximately through the turning points of the

no-load primary current curve. These points are on the ordmates

through the points where the P.D. wave cuts the time axis.

With the notation of this chapter we have

<t>m
=

(w i*i + ?^'2)/$, <f>a
= ViMagnetic

equations

where

and = W

^fl? . . .(4),

= (Rfl/((Ra + (ft).
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We also have

and therefore <f> tn
= L\ (</>m 4-

</>a) + kin2i2/(Ra .

The equation (1) may be written in the form

Fundamental ~D ' /j. JL\ /\
equations. ^1

= -i*i + 7? i ^ (9m + 9a) W
and equation (2) is

where R.2 = oc + r2) x being the non-inductive load.

Hence by the preceding paragraph

d f 7 n<? d , , . x ?i2
2

c?^<, x . .-
s {il <*" + *>' =^ t2 + * (fcl *2) + ^ dt

' -(6) '

In Chapter vm we showed that the equations to the air core

transformer are

1 ~{il

and -M~ fa + (MJL,) 4}
= R,i, + L2 o-

~*
.

Comparing these equations with the equations (a) and (6)

given above it will be seen that, when there is no iron in the core,

and k^ (< wl + < a)
= Mi, + (M^

Therefore ^i^/Wj

We see also, by comparing the equations, that

and o- = l- Jtf
2/^ = 1 - (??a (P6/((Ra + (R) ((R6 + ffl).

If the primary applied potential difference be maintained

constant and the primary resistance be negligible, we have shown

that

L
1 il + Mi2

= L
l
i .

Substituting L^njn, for M/L :
in this equation we find that

7?!^ + k^n^ = w^'o,

an equation which holds for the iron core transformer (see formula

(6), p. 304).
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It follows from the preceding section that the equations for the

The value iron core and the air core transformer are identical
f ^i- when we assume that k is constant. We have

already shown that when the effective value of the wave of the

applied P.D. is maintained constant but its shape varied, the

maximum value of the flux in the iron core varies. Hence the

reluctance of the core and therefore also the value of &1? which

equals (fta/((fta + (ft),
will vary with the wave shape. We shall

make the assumption, when finding the approximate formulae

required in practical work, that for a given effective value and for

a given wave shape of the applied P.D. we can find the equations

connecting the effective values of the currents and volts, and the

mean value of the power, as if k^ had a constant value.

In practice (fta is much greater than (ft except for two brief

intervals every period, and so k^ during nearly the whole period

is approximately equal to unity. When n^ + w2 i'a is zero, 4>m is

finite owing to remanence, (ft must therefore be zero and so ki is

unity. When n^ + n2 i2 lies between zero and n^c, where n^
is the value of the magnetising turns required to produce the

coercive force, (ft is negative and varies from zero to x . Hence

&j must vary from 1 to oo and from oo to in the time that

Tijij + 7i2 i'2 takes to increase to its maximum value and diminish to

zero again. When n^ + w^ is a little greater than %ic ,
k attains

a value k which is nearly equal -to unity, and it retains this value

during the time that n^ 4- n.2 i2 takes to increase to its maximum

value and diminish to zero again.

Since k^ equals (fta/((fta + (ft)
we see that when (ft has the value

(ft> &i is infinite. It is obvious therefore that if we only consider

the instantaneous values of the variables the assumption that fcj.

is constant is inadmissible. We can see from equation (6), p. 304,

namely,
n^ + AifMtrB-ftiH,

that when ki is infinite i2 is zero. Since, on our assumptions,

</>&
vanishes with i2 ,

it follows that the flux in the core is the same

as when the secondary is on open circuit, and so ^ = iQ . Hence

A-^2 is zero when k^ is infinite, and when ^ is large its value is

small and hence the effective value of k^n^ may be written knzA* t

where & is a fraction nearly equal to unity, without appreciable
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error, provided that the time taken by n^ + n^i2 to increase from

zero to n^c be short compared with the time it takes to reach its

maximum value. It is more difficult to see the magnitude of the

error introduced into our equations by the assumption that kj_ is

constant in (6). It amounts to assuming that the hysteresis of

the core is negligible, and that its permeability is constant. These

assumptions are not admissible when we are considering instan-

taneous values
;
but when we are considering effective values,

especially when the coercive force is small compared with the

maximum magnetising force, as in the case of an open iron circuit

transformer or a closed iron transformer working at a high flux

density in the core, the equations deduced on this assumption

are sufficiently accurate for all practical purposes. The formulae

often express what happens with an accuracy which is within the

limits of experimental error over the whole range of the permis-

sible loads.

The equations (a) and (6) given above can, when we may
Transformer regard ^ as constant, be studied readily by means
diagram. of tjie diagram given in Fig. 143, which is almost

identical with the fundamental diagram of the transformer when

there is no magnetic leakage (Fig. 118, p. 257). In Fig. 143

00 represents the effective value Fx of the applied potential

difference, OB represents Rl
A l ,

the electromotive force required

to drive the current A l through the resistance Elt and BO repre-

sents the effective value of n l d((j) in + <f>a)/dt, that is, the effective

value of the back electromotive force due to the varying flux

linked with the primary circuit. These three electromotive forces

balance one another, and therefore their vectors always form

a triangle whatever may be the load on the transformer. In

practice, OB is about one per cent, of 00 at full load, and there-

fore, when the applied potential difference 00 is maintained

constant, BO will be approximately constant at all loads. Hence,

the maximum value <I> of the flux of induction linked with the

primary is approximately constant at all loads. If the shape of

the wave of the applied P.D. does not alter, this flux will be about

one per cent, less at full load than at no load.

Let us now consider the equation (6) for the current in the
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secondary ; assuming that k^ is constant it may be written in

the form

If we produce CB (Fig. 143) to D and make

w/wofe

BD will represent the effective value of k^i* -=- (fa + fa) in

magnitude and phase. If there were no magnetic leakage, k

would be equal to unity. In actual trans-

formers the value of k^ is nearly equal to

unity, but it varies with the shape of the

applied wave.

When the resistance of the primary is

negligible and the secondary is on open circuit,

the electromotive force at its terminals is in

phase with BD, but when there is a non-

inductive load x on the secondary, the terminal

potential difference is in phase with the current

and is not in phase with BD. The resistance

R2 of the secondary circuit equals rz + %, and

we may consider that its self inductance is

n2
2

/(8b + hn^/fta, aQd that it is acted on by
an electromotive force the vector of which is

represented by BD. If BF represent

V 4- r Af 2 I
' 2 2 >

DF will represent the electromotive force due

to the inductance of our hypothetical secondary
circuit. Since this inductance is constant, BF
and DF are at right angles to one another.

We shall call DF the leakage E.M.F. of the

transformer. It vanishes only when the primary
and secondary leakages are zero.

To a first approximation BC is constant at all loads, and

therefore also BD is nearly constant. If the wave of the applied

P.D. were sine shaped, we should have DF equal to

Fig. 143. Funda-

mental diagram.

OC= F
;

= n.BG.
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approximately. We can therefore suppose that the leakage E.M.F.

is approximately proportional to the secondary current.

We shall call the angle DBF in Fig. 143 the angle of leakage

Leakage lag in ^ag tne secondary, and we shall denote it by 0.

the secondary. When the secondary current is zero, DF is zero, and

therefore F2 is in phase with BD. According to this diagram, if

R! were zero, F2 and Vl would be in opposition in phase. We
have seen earlier in this chapter that, although e2 and et vanish at

the same instant, yet F2 and Fx are not in opposition in phase as

the wave shapes of e.2 and e1 are different. In practice it is almost

impossible to detect any difference in shape between oscillograph

records of <?2 and elt hence it will be seen from the numerical

examples worked out in Vol. I, Chap, vi, that the phase difference

must be very nearly 180 degrees. Hence this error, which is due

to the assumption we are making that ^ is a constant, is, from the

graphical point of view, a negligible one.

If the wave of E.M.F., the vector of which is BD, be sine-shaped

we have
sin = to (nfl<Rb + fen,

a
/(R) A a/BD.

Now even at full load on ordinary transformers is very rarely as

great as ten degrees. Hence, since the sine of a small angle is

approximately equal to its circular measure, no great error is

introduced, provided that the shape of the secondary E.M.F. wave

does not alter, by the assumption that the angle of leakage lag in

the secondary is proportional to the secondary current.

In Fig. 143 the angle BOG is the phase difference ^ between

Method of tne primary applied P.D. and the primary current,

finding n. ^Q cosine of this angle is the power factor of the

primary circuit. Now, when the secondary is on open circuit, OB
is R^.Ao, where A Q is the magnetising current and the angle BOG
is

A/TO
. Hence we have

n = k^n, = BD/BC = EJ(V1
- E,A cos ^ ) (5),

where E2 is the effective value of the secondary E.M.F. on open
circuit. This equation enables us to determine n easily. As a

rule jRjA cos
-V|TO

is negligible compared with Fj.
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From (4) we see that

Equations &! (<f)m + ( a)
= (n^ +

connecting the
currents. Also, from (1), we have

<t>m

1 t*
+ $a =

\ (ei- Riii) dt,
KiJ

if t be reckoned from the instant when
<f>m + <

ft is zero. If, there-

fore, we neglect R^ in comparison with ely the wave of
</>m 4-

<f>a

will practically be constant in magnitude and shape at all loads,

provided that the effective value and the shape of the applied

P.D. wave be maintained constant. The magnetising turns that

produce </>m + <f>a must therefore be represented by the same

function of the time at all loads, and hence

OX* ^1^1 "T" ft'l ^2^2 ~"~ ^l^O (v)K

where fe equals (Rfl/((Rfl + <R).

At full load, the maximum value of < m + (f>a is slightly less

than at no load owing to the term R^ becoming appreciable.

The magnetising turns n^ are therefore also slightly less. In

practice, however, the maximum value of n^ at full load is much

greater than the maximum value of n^o, and equation (6) shows

that the difference between these two large quantities is always

equal to a small quantity. Hence it is unnecessary to make the

one or two per cent, correction to the small term n^ as this cor-

rection is considerably within the possible errors of observation.

Making now the supposition that k is constant, the equation

(6) shows that the vectors A lt A z and A are in one plane. We
see that the resultant of the magnetising turns ^A-^ and kln2A 2

equals n^A Q . Hence resolving the vector values of the ampere
turns along and perpendicular to CD, we have

nLA l cos ^T! k^n^A^ cos 6 = n-^A^ cos
-^r ,

and n1A 1 sin ^ k^n^A^, sin = n-^A^ sin
i|r

.

We may write

nA 2 cos 6 = A! cos ^ A cos ilr }

[ (7),
and nA 2 sin 6 = A 1 sin ^ A sin

A/r J

where n = k,n9/n->.
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Hence we may use any of the three following equations to

find 6:

sin 9 = (A l sin ^ - A sin ^ )/nA.2 ............ (8),

COS 6 = (A l COS ^TJ A COS ^v)/7?J., ........... (9),
and

tan =
(w4.! sin

-*//-!
A sin

ifr9)/(J., cos ^ ^1 cos ^r ). . .(10).

If TT and TPi express the power given to the primary when
the secondary is on open and closed circuit respectively, we have

TF = Fj^lo cos
>/r

and Wl
= V1A 1 cos ^.

uation (9) may therefore be written in the form

cosB^(Wl -W )/nV1 A t ... ............ (11).

It will be seen that equation (10) is independent of n, and 6 is

calculated from the readings taken on the primary ammeter and

wattmeter only. Equation (8) is also useful in finding 6, but

equations (9) and (11) can only be used when all the quantities

involved have been determined with the greatest accuracy.

This is due to the fact that cos 6 only differs from unity by
about 1*5 per cent, at full load, and so an error of one per cent.

made in measuring W W will make a large error in the value

of deduced from (11).

It follows from Fig. 143 that

Formula for cos d = BFJBD, or BF = BD cos 0.
the secondary
voltage. We also have

o + r2 . 2
= n cos n cos \ ^! cos 1 ,

approximately, and therefore by (9) we get

F2
= n cos 6 . F! {r2 -f (n cos #)

2

R^ A 2 n cos 6 . E^A^ cos ^
= n cos . Vl (n cos 0)

2 QA 2 n cos 6 . R^A Q cos ^r,,,

where Q = Rt + rj(n cos 0)
2

.

If E.2 be the value of F2 on open circuit, then, since cos

equals unity and A is zero, we have

E> = nVl nR^ cos ^ ,

which agrees with (5).

20
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We may therefore write

72
= E2 cos -

(n cos 0)* QA 2 ............... (12).

This equation gives us the following approximate equation to find

the value of 6

ooB0-{rl V(rA + iA)4(}/, ............ (13).

When an accurate electrostatic voltmeter is available and the

alternator gives a steady effective E.M.F., this is a good method of

finding 6.

By equations (11) and (12) we have

Efficiency of A2
=

(Wl
- W )/HVl COS 6,

a leaky trans-
former. and V2

= n cos ( V^ JRjA cos
i|r ) (n cos 0)

2 QA Z .

The efficiency ??, therefore, is given by

=
(1
- W / W>) (1

- R,A, cos f /Fx
- n cos (9 .

= (1- W /W1)(l-QW1/F1

a + Won/F^cos2 ^ ...... (14).

Hence in ordinary transformers we can use the equation

V = (l-W /W1)(I-QWJV1*) ............(15)

to determine the efficiency.

Since Q equals JSj 4- (r2/ft
2
) sec

2
6, and even at full load the

value of sec2 6 is only about three per cent, greater than unity,

it follows that no practical error is introduced by finding Q from

the equation
Q = R, + r2/n*.

Slight magnetic leakage therefore makes very little difference

in the efficiency of a transformer at a given load. If the trans-

former be rated by its output when the potential drop at the

secondary terminals is 'a* per cent., we see from (12) that the

greater the leakage for a given quantity of copper and iron the

smaller will be the permissible maximum output. Hence designers

of constant pressure transformers endeavour to reduce the mag-
netic leakage to a minimum.

The shape of the applied wave of P.D. has an important effect

Effects of on the working of transformers especially at light
wave shape. loads. If we neglect the primary resistance and
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reckon the time from the instant when e l is zero and increasing

we have from (1)
<

ldt-3> = A t/n 1 -3> ............ (16),

where < is the maximum value of
<f>m + < a . Hence if A denote

the area of the positive half of the applied wave we have

<l> = A . 108

/2n 1 .

Let vm and v denote the mean height and the height of the

centre of gravity of the applied wave respectively, then by Vol. I,

p. 70, Ff = 2vm v, and thus since A = vm (T/2)
= vm/2f, we have

4>=F1

2 .108

/(8//i1 v) ..................... (17).

It follows that for a given value of Vl and a given frequency,

the maximum value of < m + $a varies inversely as v. Since on

no load
<f>m and

(f>a have their maximum values at the same

instant, namely, when the current is a maximum, it follows that

^m + *&a = * In this case <&a is generally negligible compared
with <l>m ,

and hence <l>m varies inversely as v. In approximate

work this assumption is generally permissible.

If we have a family of equivolt curves (see Vol. I, Chap, in)

those with a high centre of gravity, generally called pointed or

peaky curves, produce a smaller induction than those with a low

centre of gravity, called rounded or square-shouldered curves.

Hence the induction density, for a given effective value of the

applied P.D., varies with the shape of the wave, and therefore the

magnetising current and the core losses vary considerably with it.

It is therefore quite impossible to predict the efficiency and the

load for a given secondary drop, that is, the power of the trans-

former when connected with a given circuit, unless we know the

shape of the P.D. that will be applied to it.

In 1895, G. Roessler made careful tests to find out how the

working of a small transformer varied with the shape

of the wave of the applied P.D. We shall apply our

shades
fwave f rmu lae to his experimental results to see how

closely our theory agrees with experiment. The test

is a severe one as the transformer experimented on had a capacity

of about half a kilowatt only, and the effects of the resistance

202
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of the primary are appreciable at heavy loads. The transformer

is of the closed iron circuit type. The author has shown in The

Electrician, Vol. 42, p. 567, that his formulae apply even more

closely to the open iron circuit type.

The following are the constants of the transformer on which

the experiments were carried out. The iron plates used in the

core were half a millimetre thick, and were well insulated. The

total weight of the iron was 8168 kilogrammes (18'01 Ibs.). The

numbers, n^ and nz ,
of turns in the primary and secondary respec-

tively were 132 and 265. The primary and secondary resistances,

Rl and ra ,
were 0'179 and 0'775 ohm when cold, and 0'214 and

0'943 ohm when hot, respectively, the resistances being heated

by running the transformer for five hours at full load. As only

a Cardew voltmeter was used, which took 35 watts at 120 volts,

the open circuit volts could not be measured directly. Roessler

gives 117-5 as the open circuit voltage, and this value has been

adhered to in our calculations.

The transformer was tested first with a P.D. obtained from

a 5'5 kilowatt four-pole machine by Ganz and Co.,
core losses. . .

field magnets rotated, and afterwards

Fig. 144. Transformer connected with a Ganz Alternator.

(a) Primary potential difference wave.

(6) Primary current wave at half full load,

(c) Secondary potential difference wave at half full load. The scale of the

secondary volts is half that of the primary.
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with a P.D. from a small O'o kilowatt machine by Wechsler and

Co., with four field poles and a rotating ring armature which

had four coils.

The transformer was used as a step-up transformer, the

effective voltage of the applied potential difference wave being 60

and of the secondary potential difference wave about twice as

much. The shape of the potential difference wave of the Ganz

machine is shown by the curve 'a' in Fig. 144. The potential

difference wave '

c of the secondary at half load is also shown.

It will be seen that the two curves are approximately similar,

and that they vanish at the same instants. The secondary load

is non-inductive, and so the maximum value of the secondary

current occurs at the instant when the secondary voltage is a

maximum. Hence at this instant the primary current has also

its maximum value. When elt e.2 and i2 are all zero, i\ must be

equal to the maximum value of t
,
where i is the magnetising

current wave. The effective value Vl of the primary voltage

wave is 60, and the height of the centre of gravity of the area

of the wave is 50'8.

In Fig. 145 the corresponding curves of the transformer when

Primary
Volts

100

Primary,
Amperes

Secondary
Volts

Fig. 145. Transformer connected with a Wechsler Alternator.

(a) Primary potential difference wave.

(b) Primary current wave at half full load.

(c) Secondary potential difference wave at half full load. The scale of the

secondary volts is half that of the primary.
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connected to the Wechsler alternator are shown. The effective

primary voltage V1 is 60, and the height of the centre of gravity
of the applied P.D. wave is 35'7. We see from (17) that the ratio

of the maximum value <3> of the flux, when the transformer is con-

nected with the Wechsler machine to its maximum value when

connected with the Ganz machine, is 50*8/35 '7, that is, 1*42.

Again, by Steinmetz's law, the hysteresis loss varies as the l'6th

power of the maximum induction density, and hence, if we make

the assumption that the ratio of the maximum induction densities

in the two cases is 1*42, the hysteresis loss will be 1*76 times

greater with the Wechsler machine.

We saw in Chap. IX that the eddy current loss in the core

is practically constant if V1 remain constant. We shall assume

that its value is x in both tests. When connected to the Ganz

machine W is 34*5, and deducting the copper loss 0'2 (1*46)
2
,

that is, 0*4 watt (see Table I given below), we get 34*1 watts as

the core loss. Similarly, we get the core loss with the rounded

waves to be equal to 51*9. We have, therefore,

51-9 -a? =1-76 (34-1 -a?),

and thus x = 11 watts approximately.

The eddy current loss cannot be calculated accurately by this

method as the empirical law for the hysteresis loss is only approxi-

mately true. Assuming, however, that this value of the eddy
current loss is exact, we easily find that the hysteresis loss in

the iron is 2 '3 watts per pound with the rounded waves, and

1*3 watts per pound with the peaky waves.

In the experiments the mean value of the frequency / was

40'6, and the cross section of the core was 20'19
Induction

density in square centimetres.

Hence we find by means of (17) that with the

pointed waves

<D/20-19
=

and with the rounded waves

<D/20'19
=

If we neglect <E>a in comparison with 4>m ,
we see that the
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maximum induction density in the core is 8200 with the peaky
waves, and 11700 with the rounded waves.

In order that the figures may be compared readily, we have

altered them so as to make the primary voltage 60 in each ex-

periment. The values of A l} A^ and F2 have been altered in the

ratio of 60 to V1} and the values of Wl and Wz in the ratio of 602

to FT. The values of ^ in the fifth column are calculated from

the formula

In Table I, Roessler's results are given. The frequency of the

alternating current is 40*6. The maximum induction

density in the iron core is 8200. Vl denotes the

primary P.D., A l the primary current, Wl the primary

power, A/T!
the phase difference between the primary

current and P.D., F2 the secondary P.D., A 2 the secondary current

and
it]
the efficiency.

The efficiency is calculated by the formula

(aky
n

waves).

where W2 , the power in the external secondary circuit, equals

TABLE I. EXPERIMENTAL RESULTS.

Number
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applied P.D. is 60, are given. In calculating this table a know-

ledge of the following data only has been assumed :

1. The magnetising power WQ ,
which equals 34'5 watts.

2. The magnetising current A
,
which equals T462 amperes.

3. The resistance constant Q, which equals 0*404 ohm.

4. The secondary voltage E2) on open circuit, which is taken

to be 117-5.

The angle (see the foot of the page) has been taken equal
to (6'5)/3 degrees per ampere of secondary current.

The values of A 2 in this table are taken directly from Table I.

TABLE II. CALCULATED VALUES.

Number of

Experiment
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In the second row the figures are found by formula (10). The

probable values of 6 were found by plotting out the values of 6

and A 2 given in the first two rows of the above table and drawing,

through the origin, the straight line which makes the average

deviation of these points from it a minimum.

If we calculate 6 by the cosine formula (9), we find that in

each experiment cos comes out greater than unity, showing that

there is probably a small error (one or two per cent.) in the

determination of WQ . The leakage may be expressed by saying

that the lag due to leakage when connected with the Ganz machine

is 2*2 degrees per ampere of secondary current.

In Table II the column headed A z is taken from Table I. The

column headed ^ is calculated by the formula

tan^ = (A sin
\/r -f nA z sin 0)/(A cos ^ + nA z cos 6),

which follows at once from (7). We see from the column headed

T/TJ
in Table II that this angle attains its minimum value before

the secondary current increases to 4'58 amperes.
The column headed A^ is calculated by the formula

This formula follows readily from (7). Wl is now got by

evaluating F^ccs-^. F2 is calculated by (12), and hence, in

our case, since (n cos 0)
2 Q = 1*5 approximately, we have

F2
= 117-5 cos 0-l-5A t .

W2 equals F2J. 2 ,
since the load is non-inductive, and the last

column 77 is the ratio of TF2 to Wlt This method of calculating the

efficiency at various loads is however not to be commended as it is

aifected by the errors made in calculating A lt ^frl
and F2 . A much

simpler and more accurate method is given below.

In Table III the results of Eoessler's experiments on this

_ . transformer when connected with a Wechsler
Experiment
with wechs- machine are given. When necessary we have,
ler machine j *
(rounded as betore, reduced his readings so as to make the

effective primary voltage 60 in all the tests. The

frequency was the same as in the preceding test. The flux

density in the core, however, is now much higher, being approxi-
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mately equal to 11700 (p. 310). The same notation as in Table I

is employed, and the formulae used in calculating Table IV are

the same as those used in calculating Table II.

TABLE III. EXPERIMENTAL RESULTS.

Number
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In Table IV the values of the various quantities are calculated

from the following data :

1. W equals 53'0 watts.

2. AQ equals 2*10 amperes.
3. Q equals 0'404 ohm.

4. E.2 equals 117'5 volts.

The angle 6 has been taken equal to I'l degree per ampere of

secondary current.

Tables III and IV show a very satisfactory agreement. We
find n from the formula

n = E2/( V}

- R^A, cos ^ )
= 1-998.

The angles of leakage lag calculated by the same formulae as

before are given in the following table.

Number of

Experiment
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The discrepancy between the observed and calculated values

is probably due to an error in the measurement of WQ . With the

rounded waves the formula for the efficiency is

n = (1
-

53/Tfj) (1
- 0-404Fa/3600).
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Since the height of the centre of gravity of the wave pro-

duced by B is only one-half the height of that of A, the

maximum induction density in the core is twice as great when

tested on B. Hence, by Steinmetz's law, the core loss when

tested on B will be

2 1 - r>

(100 - 10) 4- 10
;

that is, 282'8 watts.

Using the formulae

,JA = (1
- 100/TTO (1

- 10TFa/2500
2

)

and <ns
=

(1
-
283/TFO (1

-
lOTPi/2500

2

),

we get the following table.

Load
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They may also be written

n] t,
-
(N/n)

-
(1/n) (n

= Rr,

where i' = ni.2) n being equal to k^n^. We can also write

These equations suggest the equivalent net-work shown in

Fig. 146. A non-inductive resistance R^ is placed in series with

an imaginary choking coil T which acts in exactly the same way

N/n

Fig. 146. Equivalent net-work of a leaky transformer on an inductive load

(a;, N). T acts in the same way as the primary of the transformer would, if it

had no resistance and the secondary was on open circuit. ^ is the leakage

constant and n equals k^n^.

as the primary coil of the transformer would, if it had zero

resistance and the secondary was on open circuit. Across the

terminals of this choking coil are placed in series two choking

coils (0, N/ri>) and (0, (!/) (na
8/^f fen,/(R)] and also a non-

inductive resistance (r2 + x)jn^. If the primary P.D. be applied

across A and B, the current in Ht will be equal to the current in

the primary coil of the actual transformer when the load is (x, N),

and the current in the secondary will be equal to 1/n times the

current in CDB and will be in opposition to it in phase. The

secondary potential difference F2 will be equal to 1/n times the

P.D. across the inductive coil (#/n
2
, N/n

2

) in the circuit CDB and

it will be in opposition to it in phase.
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In the ordinary transformer Rl is negligible, hence the applied
P.D. at the terminals of T (Fig. 146) is constant at all loads. / is

therefore constant at all loads and we have

^ + ni.2 = i

as before (p. 304).

In Fig. 147 let OY give the phase of the applied potential

Transformer difference and OA represent the magnetising current.

Then if OP represents the primary current vector A 1

for a particular load, AP will represent nA 2 when the primary
resistance ^ is negligible, for in this case we always have

If we now suppose that the applied P.D. wave is sine shaped

Y

Fig. 147. Transformer diagram. Locus of P is a circle. OP is the primary
current vector and OY gives the phase of the applied P.D.

and that 6 is the phase difference between the P.D. applied to

CDB (Fig. 146) and i', so that is the angle we have defined as

the angle of magnetic leakage, then, when the secondary load is

non-inductive, we have

sin =
(o)//i

2

) (n2
2

/(R, + fen^/CR,) A'/Vl

Draw AB (Fig. 147) parallel to OX and PB perpendicular to

AP. The angle ABP equals the angle between AP and OF and
is therefore equal to 6. We also have

AB = AP/siu = 7i4 2/sin 6 = tt
2

F,/{a> (rtf/flfe + ^w^/CR,)}.

Thus, when the load is non-inductive and the applied potential
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difference Vl is maintained constant, the locus of P is a circle.

It has to be remembered that in proving this theorem we have

assumed that the applied wave of P.D. is sine shaped and that i^
is negligible.

We shall now make the further assumption that r2 is negligible.

In this case P coincides with B so that AB equals nA s ,
where A s

represents the short circuit current in the secondary. Therefore

The quantity (n<?/(Rb -\- kin.?/(5la) co is called the leakage re-

Leakage actance. It can be measured very easily. If we
reactance. short-circuit the secondary terminals of a transformer

through an ammeter of negligible resistance and inductance, and

gradually increase the P.D. applied to the primary terminals until

the secondary current equals the full load current A z of the

transformer, we have

nVJ/As = (nj/(5lb + bnflQa) to,

where F/ is the applied P.D. when A 2 is the short-circuit current

in the secondary. This expression may be taken as a measure of

the leakage of the transformer, and can be employed usefully in

conjunction with the diagram given in Fig. 147. If the applied

P.D. wave be not a sine curve, then the leakage reactance can still

be measured by the ratio of nV-I to A 9t but the above equation has

to be modified.

We see at once from Fig. 146 that the effect of putting
an inductive load on the secondary is the same as

that produced by an increase of the magnetic leakage.

Tne radius of tne circle in Fig-^ wil1 be diminished.

The values of ^ and n however remain the same.

Let us suppose that an inductive load N and a non-inductive

load x each produce the same current A 2 in the secondary. Let

us suppose also that the applied P.D. is sine shaped. From

Fig. 147 we see that

(
Vx + r2A,y- + ((oLA.Y = n2

Vf,

and (
VN + a>LA,Y + r2

24 2
2 = n2

Vf,

where Vx and VN are the terminal P.D.S on the non-inductive and
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inductive loads respectively and L equals n2
2

/(R& 4- kjis/Gla. Hence,
we have

Vx = {n'Fx'
-

and VN = [K* + (o>Z4 2)
2

}*
- coLA 2 ,

where K* = n~V^ - (coLA^ r.?A 2
2

.

Now if y = VK2 + a? x,

dyjdx = #/V
'

K* + a? 1 = a negative quantity.

Therefore \/K* + a? x continually diminishes as x increases.

We see therefore that VN will be less than Vx if a)L, or

a) (n 2
2
/(R& + &iW2

2

/^)> ig greater than ?*2 . If there were no magnetic

leakage, VN would be greater than VX) and the drop on an in-

ductive load would be less than on a non-inductive load. In

most commercial transformers a)L is greater than r2 ,
and thus the

drop on an inductive load is the greater.

For the economical transmission of power very high voltages

High voltage
are necessary. In some cases pressures greater than

transformers. 5QOOO volts are used. In these cases the trans-

formers are of large size, and, even when the losses are only
one per cent, of the full load output, this may represent twenty
or thirty kilowatts. Special arrangements have then to be em-

ployed to keep the transformers cool. There are three methods
in general use. In the first method the transformers are cooled

by currents of air produced by electric fans. In the second

method they are immersed in oil, contained generally in an iron

case which is corrugated so as to increase the cooling surface. In

the third method we have large spirals of brass tubing, through
which water is kept circulating, immersed in the oil so as to keep
it cool. The transfer, TS are generally of the shell type, the core

consisting of sheet si i plates. Numerous ventilating ducts

are made, through which the oil or air circulates when the trans-

former is working. The coils are arranged in layers, so that

wires at great differences of potential are kept well apart from

one another. This construction also admits of sandwiching the

primary and secondary coils, and so making the magnetic leakage
a minimum.

K. n. 21
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In Fig. 148 is shown the efficiency curve of one of the 2340

kilovolt ampere transformers made by the Oerlikon Company
for the power transmission plant at Caffaro (see p. 107). The

transformer is in a cast-iron case containing oil, and water cooling
is employed. It is designed for a frequency of 42, and the ratio

of transformation is 9000/40000. The section of each of the three

cores is rectangular, and the cores are arranged side by side.

The windings are of copper strip insulated by presspahn. The

high-pressure coils are each divided into 36 sections, and are

wound outside the low-pressure coils. The resistance per phase

Percentage
Efficiency

100
99
98
97

96
Qe
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that of air, and, unlike solid dielectrics, in the event of a spark

passing it is at once extinguished and the dielectric strength and

insulating properties of the oil are not weakened. When the

transformer is connected with the supply mains, the oil in the

Fig. 149. 2340 K.V.A. transformer for a 40000 volt transmission line.

ventilating ducts and in contact with the coils is warmed and

rises to the surface. The oil in contact with the brass spiral

tubes, surrounding the transformer, through which water is kept

circulating, sinks, and thus a continual circulation of the oil is

212
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maintained. The heat developed in the transformer is carried

away by the convection currents in the oil and conducted into the

water or radiated from the case. A 2400 kilovolt ampere trans-

former requires approximately three gallons (13'6 kilogrammes) of

water per minute for cooling.

Large high voltage transformers usually have a thermometric

alarum fitted to them, so that in the event of the temperature of

the oil getting too high, owing to a diminished flow of the water

or for any other reason, a bell is rung or a gong is sounded.

In practical work it is found that the larger the size of the

The heating of transformer the greater the difficulty experienced in

transformers.
keeping it cool. This is due to the fact that the area

of the cooling surface increases only as the square of the linear

dimensions whilst the weight of the copper and iron used, and

consequently the heat generated in them for given current and

flux densities, increases as the cube of the linear dimensions. As

a rule, therefore, not only are larger transformers made heavier

in proportion, but more attention is paid to the methods adopted
for keeping them cool. It is customary also so to design trans-

formers of large capacity that their efficiencies are higher than

those of small transformers.
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speed motors. References.

IN the utilisation of alternating currents to supply motive

power for industrial purposes, many types of motor

current are employed. Some of these motors run at the

same speed at all loads, whilst the speed of others

varies with the load. They may conveniently be divided,

therefore, into synchronous and asynchronous machines. The

theory of synchronous motors has already been discussed in

Chapters IV and v. We saw that an ordinary single phase or

polyphase alternator will run as a synchronous motor when
connected with the supply mains in the proper manner. If 2p
be the number of poles of the field magnets, n the number of

revolutions per second and / the frequency, then, since the

angular velocity of the rotor 2?r?i equals co/p where co is Zrrf, we
must have n always equal to f/p. The only method of altering
the speed in this type of machine, therefore, is to alter either the

frequency / of the supply current or the number of poles of the

field magnets.



326 ALTERNATING CURRENT THEORY [CH.

Asynchronous motors may be divided roughly into induction

Asynchronous motors and commutator motors. The operation of
motors. induction motors depends on the torque produced
on a suitable rotor when placed in a rotating magnetic field.

The fundamental methods of producing rotating magnetic fields

are described in Vol. I, Chapter xiv, and an investigation is also

made of some of their properties. In practice, the speed of the

ordinary type of induction motor only varies by about five per

cent, from no load to full load. For most practical purposes,

therefore, we may regard the induction motor as a constant speed
motor. Most forms of commutator motor are variable speed
motors. In this chapter we shall only consider the elementary

theory of the induction motor, delaying the consideration of the

theory of commutator motors until Chapter xv.

Faraday showed that when a metallic cube was placed in a

Faraday's rotating magnetic field the cube revolved in the same
cube.

direction as the field. This rotation is due to the

reaction of the currents induced in the mass of metal on the

magnetic field. The mechanical forces produced tend to make

the induced currents a minimum, and thus act so as to rotate

the cube in the same direction as the field. If the cube were

perfectly free to move, it would rotate with the same angular

velocity as the field, and no induced currents would be generated

after it had attained synchronism. If the cube had to perform
work in overcoming friction, it would rotate at a less speed than

synchronism, and the induced currents acting on the field would

produce the couple required to do the necessary work.

In Foucault's classical experiment of a copper disc rotating in

Foucauit's a strong magnetic field, the energy expended in making
disc - the disc rotate at constant speed, when the magnetic
field has become steady, is converted mainly into heat generated

by the eddy currents induced in it. The rest of the energy is

expended in overcoming mechanical and air friction. Assuming
that all the energy is expended in heating the disc, we can write

flra)
= *-2F (i).

In this formula g is the torque in joules acting on the disc, co is



XII] INDUCTION MOTORS 327

its angular velocity and H is the heat in calories generated per
second in the disc. Hence g can be found, when H and co are

known.

In the experiment of Faraday's cube the rotation takes place

induction in exactly the same manner whether the rotating

magnetic field is produced by rotating direct current

electromagnets or by means of alternating currents. The torque

produced by the induced currents is small, and hence little power
could be obtained from a motor constructed on this principle.

The earliest induction motor, which was invented by Ferraris and

constructed in 1885, consisted simply of a copper cylinder placed

Fig. 150. Form of stator and rotor stampings for an induction motor. The

slots which receive the stator windings are open. The rotor is of the squirrel-cage

type, the holes round the circumference receiving the copper conductors.

in a rotating magnetic field. The principle of its action is

therefore identical with that of Faraday's cube. To obtain an

appreciable torque from this kind of motor, we must have large

induced currents in a strong magnetic field. To get a strong

magnetic field, it is necessary to have that part of the path of

the flux which is in non-magnetic media as short as possible.

One way of doing this is to construct the rotor of circular iron

stampings so that it forms a cylinder, the diameter of which is

only slightly less than the inner diameter of the stator. In the

slots of the stator are wound the coils which produce the rotating
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magnetic field. The torque produced in a rotor of this type, due

to the hysteresis and to the eddy currents in the iron of the

rotor, is small. A motor constructed in this manner is called a

hysteresis motor. If holes are made (Fig. 150) near the circum-

ference of the rotor, parallel to its axis, the holes being evenly

distributed round the rotor, and, if copper conductors are placed

in them, the ends of the conductors being all short-circuited at

each face of the cylinder, a very powerful torque is obtained. If

the iron is supposed to be removed from this rotor, the copper bars

with the copper short-circuiting plates at the ends will be similar

to a squirrel-cage. Hence this type of rotor is generally called a

squirrel-cage rotor. It was described and patented by Dolivo-

Dobrowolsky in 1889. Instead of having plates or rings of copper

to short-circuit the rotor windings, platinoid or other high resist-

ance metal is sometimes used. The effect of this is, as we shall

see presently, to increase the starting torque, but it lowers the

efficiency of the motor. In small motors the advantage of an

increased starting torque more than counterbalances the small

decrease in the efficiency.

The stator of an induction motor consists of centre hole

circular iron stampings about 20 mils. (0*51 mm.) in

thickness. These are usually built up inside a cast-

iron case, so that they form a hollow cylinder with slots (Fig. 150)

along the inside parallel to the axis of the cylinder. The winding
of the stator of a polyphase motor is simple. It may be made up
of rectangular former-wound coils, that is, coils which are wound

into shape on a rectangular wooden block before being fixed on

the stator, or it may have a regular bar winding as in the case of

a polyphase alternator (see Chapter n). When rectangular coils

are used they are connected in star, except in the case of large low

tension motors, in which case they are sometimes connected in

mesh. It is difficult to arrange the crossings at the ends of the

conductors neatly in three phase stators. For this reason it is

customary to place all the coils which belong to one phase at a

distance apart equal to twice the polar pitch, so that the current

at any instant goes round all the coils belonging to one phase in

the same direction. This is called a hemitropic winding..
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The form of the section of the slot (Fig. 151) has a considerable

effect on the working of the motor. If the slot be closed so that

it forms a tunnel through the iron of the stator, there is appreciable

magnetic leakage round the bottom of the slot, some of the lines

of force due to the stator current encircling the primary coils only.

Stator

Rotor

Fig. 151, Shape of the slots in the stator and rotor of an induction motor.

In this case, however, the current that the machine takes when

running at approximately synchronous speed at no load, that is,

the magnetising current, is very small. When former-wound coils

are used in the stator circuits, the slots are simply rectangular in

shape. The magnetising current of this type of motor is high

compared with that of motors which have nearly closed slots or

which have tunnels for the stator windings.

Let us suppose that the magnetic field due to the stator

currents rotates with a constant angular velocity a)1 .

Let us also suppose that the angular velocity of the

rotor is &>2 . The slip s of the rotor is the ratio of the excess of

the angular velocity of the magnetic field over the angular velocity

of the rotor, to the angular velocity of the field. In symbols, we
have s = (o)l ft>2)/&>i, or o)2

= w 1 (l s\ The percentage slip is

100 s. When the rotor is at rest, o>2 is zero, and hence the slip is

unity and the percentage slip is 100. If the rotor were rotating

synchronously with the field, both the slip and the percentage

slip would be zero. We shall denote the relative angular

velocity ^ &>2 of the stator field and the rotor by ,
so that

0) = $&>.
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Let us suppose that the rotor is a copper cylinder. Impress

The tor ue
on ^^^ ^e stator and the rotor an angular velocity

when the a? equal and opposite to that of the stator field. The
rotor is a . _

, ,
_
rr

copper magnetic field due to the stator currents is now fixed

in space and the rotor is revolving with an angular

velocity (o^ o>2). The magnetic field produced by the currents

induced in the rotor will rotate round it in the positive direction

with the angular velocity w^ co.2 . This follows since the induced

currents flow in such a direction that they tend to prevent the

magnetic flux due to the stator currents from entering the

cylinder. Hence the magnetic field due to the rotor currents,

and therefore also the resultant magnetic field in the air-gap, will

be fixed in magnitude and direction. We have thus a copper

cylinder rotating in a fixed magnetic field and the torque g acting
on it must obviously be constant. The power given to it by the

field is g (coi o>2), that is gw, and this must equal the heat

generated in the rotor per second. The frequency of the currents

induced in the cylinder is o>/27r. It depends only on the relative

angular velocity CD of the field and the cylinder, and hence, if

wl be constant, the frequency of the induced currents varies as

the slip s. When o^ is constant, we also see that the torque

multiplied by the slip is proportional to the power expended
in heating the rotor.

Let us still suppose that the rotor of the motor is a copper

The efficiency cylinder. The magnetic field due to the stator
of the rotor. currents produces a torque g on the rotor, and as

the field rotates with an angular velocity coi the power given to the

rotor is gm^ We have seen that the power expended in heating
the rotor is g(co1 a)z)- Hence gw2 is the power available for

producing rotation in the cylinder and overcoming the resisting

torque due to the load, the friction of the bearings, etc. We
shall define the efficiency 77,.

of the rotor as the ratio of the

mechanical power ga) 2 developed in it, to the total power
received. Thus we have

rjr
=

0)2/0)!
= 15, and 5 = 1 ijr)

where s is the slip.
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In genera], whatever form the rotor may have, Go) is the

average value of the power expended in heating it, and Gw l is

the average value of the power it receives, where G is the average

torque. Hence the above formulae still hold when rjr denotes the

ratio of the average mechanical power to the average total power

given to the rotor.

Let us now consider the theoretical induction motor. When

adjacent coils belonging to one phase of the stator
The magnetic .

J
,

field in the winding are wound in opposite directions, let zp be

the number of coils per phase, and let a be the step

from the centre of one coil to the centre of the next coil of the

same phase winding, so that 2pa is the circumference of the stator.

If the winding be hemitropic we suppose that p is the number of

coils in a phase winding, and that 2a is the distance between

adjacent coils. In either case, owing to the very minute air-gap

used in practice, we can assume that the circumference of the

rotor is also 2pa. Let w 1/27r be the frequency of the polyphase

currents which supply the stator so that the angular velocity of

the rotating field will be wjp, whichever winding be used. If the

angular velocity of the rotor be tojp, the relative angular velocity

of the rotor and the field due to the stator will be (o^ e 2)/P or

ay/p, and this is the rate at which the stator flux will cut the

windings of the rotor. The flux due to the induced currents in

the rotor windings will rotate relatively to the rotor at the same

speed co/p as the stator flux, and its angular velocity in space will

therefore be a)/p + co.2/p, that is to^/p.

Now impress on both the rotor and the stator an angular

velocity cojp. Both the stator and the rotor fields will be

brought to rest, and we shall have the rotor revolving in a fixed

magnetic field with an angular velocity (o^ ay^/p. In order

to calculate the instantaneous value g of the torque we need to

know the value of the currents generated in the rotor. We need

to make some assumption, therefore, as to the distribution of the

flux in the air-gap. In practice jutting out (salient) poles are

never used and the windings are well distributed, we may therefore

suppose that the distributions of the magnetic flux due to the

currents in the stator and rotor respectively can be represented
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by sine curves. The ordinates of these curves represent the

distribution of the magnetic flux in the air-gap of the motor.

Let us assume that the origin from which the abscissae are

measured rotates round the air-gap with the angular velocity w^p
of the gliding magnetic field, and that the intensity hr of the field

Fig. 152. Sine distribution of the magnetic field in the air-gap of an induction

motor. AB is a magnified image of the air-gap, the flux density being represented

by the number of lines per unit length. There are 2p bunches of lines round the

air-gap, neighbouring bunches pointing in opposite directions.

due to the stator currents is a maximum at 0. The intensity of

the field at a point P may be written

h ~ hi cos (iras/a) hz cos (irxja a),

where h2 cos (irxja a) is the intensity of the field at P due to

the rotor currents, and x is the length of OP measured along the

circumference of the rotor. We have prefixed the negative sign

to h? as the induced currents in the rotor tend to prevent the

magnetic flux from entering it.

Let us now consider a complete turn of the rotor winding

(Fig. 153) formed by two conductors AD and EC and their end

Fig. 153. AD and EG are two of the rotor conductors. AB and CD are

connecting pieces.
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connections. The conductors are placed in slots, and are parallel

to the axis of the rotor. Let b denote the breadth of the coil,

that is, the distance, measured along the air-gap, between the axes

of the two conductors. At any instant let x be the abscissa of a

O

B

-/:

Fig. 154. ABCD is one of the rotor circuits (Fig. 153). The magnetic flux is

perpendicular to the plane of the paper, and its density is given by the ordinates of

the sine curve drawn in a plane through OX at right angles to 1 the plane of the

paper.

point P (Fig. 154), at the centre of this coil, from the moving
origin. If I be the length of the parallel conductors and < be

the total flux embraced by the coil at this instant, we have

rx+6/2

</>
= I hldx'

x+b/2

L
cos (vaila) 7i2 cos (nof/a a)} ldx

r

a? -6/2
"

=
(al/7r) [^ sin (TTX'JO) h2 sin (nx'/a a)]**If2

) {sin (irxja + 7rb/2a) sin (Trxja 7rb/2a)}

(alhz/Tr) {sin (irxja + 7rb/2a a) sin (irxfa 7rb/2a a)}

) sin (7rb/2a) cos (TTX/O)

(2alh2/7r) sin (?r6/2a) cos (jrx/a a)

=
<!>! cos (irxja) <l>2 cos (?r^/a a) (a),

where 4>x
=

(2al/7r) sin (?r6/2a) . A1}

and <I>2
=

(2al/7r) sin (7rb/2a) . h2 .

4>j is the maximum value of the primary flux embraced by the

given coil of the rotor, and <I>2 is the maximum value of the

secondary flux embraced by the same coil. To a first approxima-
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tion ^ will be proportional to N^, where N is the number of

turns, or 2^ is the number of active conductors in the stator

windings, and 7j is the maximum value of the current in a

stator conductor. We may therefore write <&1
=MN1I1 ,

where M
is a constant. We shall also suppose that nx is the number of

turns in a stator coil, so that Nijn^ is the number of coils.

Similarly, we can write <&2
= L2N2I2 ,

where N2 is the number

of turns of the rotor windings, and we suppose also that nz is

the number of turns in a rotor coil.

Let us suppose that all the rotor coils of one phase are in

series and form a closed circuit. Let r2 be the resistance of

a single turn, so that n2r2 is the resistance of a rotor coil. Then,

by Faraday's law, n2r2 i2
= n2 d<l>/dt, where i2 is the current in the

circuit. Hence, we have

r2 i2
=

(TT/O) {<I>i
sin (ira/a) <I>2 sin (irxja a)} dxjdt.

Now dxfdt measures the relative speed of the origin and the

point P on the rotor. Therefore dxjdt = (o>i/p c^2/p) T wr/p,

where r is the radius of the rotor. The circumference of the

rotor equals 2?rr and it also equals 2pa, and therefore, r/p
=

a/ir.

Thus dxjdt = (aIIT) a), and hence we have

r2 i2 = <!>! sin (TTX/O) + a)<&2 sin (ira/a a).

Now <I>2 cos (TTX/O, a) will have its maximum value when

i2 has its maximum value, and therefore, we can write

i2 = 72 cos (Trxja a) (6).

Substituting this value of i.2 in the above equation, we get

r2/2 cos (irxla a) = co^ sin irxja o)<&2 sin (irxfa a).

In order that this may be true for all values of x, the coeffi-

cients of cos (w&/a) and sin (iras/a) on each side of this equation
must be equal. We therefore get

r2I2 cos a. ft><!>2 sin a = 0,

and r2/2 sin a a)^ + &><1>2 cos a = 0.

Thus tan a = r212/&>< 2 (1)

= r2/(coL2N2) (2),

and ^2^2 = 0)^1 sin a. (3).

Hence, also, ^2 = ^cosa (4).
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The relations (1), (3) and (4) may obviously be shown graphi-

cally by constructing a right-angled triangle whose sides are

a>3>.2 and r272 respectively (Fig. 155).

The hypotenuse will be equal to &><E>i,

and the angle between the lines re-

presenting o)^! and <w<E>2 will be a,

where TT a is the angle of lag be-

tween the flux due to the currents in

the stator windings and the flux due

to the currents in the rotor windings

at any point on the circumference of

the rotor.

Substituting <!>! cos a for <
2 in (a),

we get

$ = <J>j sin a sin (Trxja a)

=
(r2/2/6>) sin (TTXJCL a).

Comparing this value of
</>

with (6),

we see that it vanishes when i2 has a

maximum or a minimum value. It

also vanishes when a is zero, that is,

when the stator and rotor fluxes are in opposition in phase.

Fig. 155. Relations be-

tween the rotor and stator

fluxes and the rotor current.

Formuiae for

If a current ia flow in a conductor placed in a uniform mag-
ne^c ^e^ ^ intensity k, and if the length I of the

the torque. conductor is at right angles to the field, the force /i

acting on it is given by /i
= hli2 ,

where iz is the current in the

conductor and all the quantities are measured in c.G.s. units

(see Vol. I, p. 27). The force, therefore, on the rotor circuit shown

in Fig. 154, is given by

f^
=

hji,, {cos (ITX/CI + 7rb/2a)
- cos (7rx/a 7rb/2a)}

hjii2 {cos (Trxja a. + 7rb/2a) cos (Trxja a 7r6/2a)},

and since, by (b), i2 = /2 cos (nrxja a), we get

/!
= 2/1^/2 sin (7r&/2a) sin (7n/a) cos (?r^/a a)

- hJ,I2 sin (7r6/2a) sin (2?nc/a
-

2a).

Now we have (p. 333)

h, sin (7rb/2a)
=

(ir/2aO ^ = (ir^al) MNJ,.
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We also have 7r/a
=

p/r, where r is the perpendicular distance

between a rotor conductor and the axis of the rotor. Hence,
since there are n2 turns in a rotor coil, and the torque gl on a coil

is nr we have

.

g = 2nzrlI2 (7r/2al) MN^ sin (TTX/O) cos (irxja a)

Ji2n2rlI2 sin (?r6/2a) sin (2-7r#/a 2a)

=
(p/2) MNinJJz {sin a + sin (^irxja

-
a)}

h2n2rlI2 sin (?r6/2a) sin (2-Tnc/a 2a).

The torques on the two neighbouring coils belonging to the

two other phase windings can be deduced from this formula by

writing for x, x + 2a/3 and x 2a/3 respectively. Doing this

and adding the three torques together, we find that their sum

g3 is given by
g3
=

(3p/2) MN^IJt sin a.

Hence, multiplying this by one-third of the total number N2/n2

of the coils on the rotor, we find that the resultant torque g acting
on the rotor is given by

g = (p/'2)MNlN,I1I2 smoL .................. (c).

The torque may also be expressed in any of the following ways,

g = (p/2)N.2r2^1 &ma ........................ (5),

or by (4), # = OV2)(l/2 2)3Vsin2a .................. (6),

or by (3), ^ = (^/2)( 2̂a>/r2)0>1
2 sin2a ............... ...(7),

and also, g = (pfi) (l/o>) 2̂r2/2
2

....................... (8).

We can also write (8), in the form

g (co/p)
=

(1/2) 2̂r2 /2
2 = ^2r2 ^L 2

2
,

where A 2 is the effective value of the current in the rotor wind-

ings. Since, by impressing on the stator an angular velocity

(0i/p, we reduced the magnetic field due to the currents in the

stator windings to rest, and we also reduced the magnetic field

due to the currents in the rotor windings to rest, by impressing

on the rotor an angular velocity o^/p, it follows that the actual

angular velocity of the rotor in space is w/p, and that it re-

volves in a fixed magnetic field. Hence, since all the power given
to the rotor in this case is expended in heating it, we have
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where G is the average torque and P is the power expended in

hysteresis and eddy currents in the rotor. We see that when
P is negligible we have G = g, and we can deduce the expres-
sions (5), (6), and (7) for G by means of the equations (1), (2),

(3), and (4).

From equation (7), we have

g = (p/2) (N2/r2) {^/(l + cot2

*)},

and therefore, by (2),

} ....................... (9),

Let us first consider how the torque varies with ay. When
a) is zero the torque vanishes, and when o> equals r2/L2N2 the

torque has its maximum value #max., which equals (_p/2)<lV/2Z2 .

Now ft> equals sw
} ,
where s is the slip. When s is unity the rotor

is at rest, and when it is zero the rotor is rotating with the same

speed as the magnetic field due to the stator currents. If Wj be

greater than r2/L.2N.2 ,
the torque at first increases as the rotor

starts from rest and attains the value
<7max .

when the slip is

equal to r.2/a)1 L.2N2 . It then diminishes to zero as the rotor

speeds up to synchronism. If o^ be equal to or less than r2/L2N2)

the torque has its greatest value at the start.

When r2 is large compared with a)L2N2 , as, for instance,

when the speed of the rotor is nearly synchronous with the

field, we have approximately, by (9),

g =

Now, in this case, ^o^ is nearly proportional to V the applied

voltage per phase, and hence the torque will vary approximately
as V*8/fr9 . Similarly, when r2 is small compared with a)L2N2 ,

the torque will vary approximately as ^^rjsf or V2r2/sf
s

.

In Fig. 156, a star, three phase winding for a rotor is shown,

with slip rings for inserting resistances into the rotor circuits

so as to vary the torque. The equation after (9) shows us that for

a given value of the slip ftj/oh the torque is a maximum when

r2 equals a)L2N2 . If, when the slip rings are short circuited, r2

is greater than a)L2N2 , inserting resistance diminishes the torque.

If, on the other hand, rz is less than u)L2N2) increasing the

R. ii. 22
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resistance at first increases the torque. In practice, rz is generally

much smaller than w^L^N^, and hence inserting resistance usually

increases the starting torque.

Fig. 156. Rotor of a three phase induction motor with slip rings by means

of which resistances can be interpolated in the rotor circuits.

Let us now consider a squirrel-cage rotor. Suppose that

nas ^ s^s an<^ ^2 conductors, and let b be the
s uirrei ca e

rotor.
pitch of the slots. The circumference of the rotor

will be equal to N2 b, and this, in practice, is nearly equal to 2pa.

Hence, b/a nearly equals 2p/N2 . As formerly, let the intensity of

the magnetic field at a point on the circumference of the rotor be

given by hi cos (Trxja) A2 cos (^rxja a). The current iz in the

conductor, whose axis passes through this point, is equal to

72 sin (7rx/a a), since, from symmetry, this current vanishes

when the intensity of the flux through the axis of this conductor,

due to the currents in all the other rotor conductors, has its

maximum value. If /i be the tangential force acting on this con-

ductor, the length of which is I, we have

f\
= ^2 }^i cos (7ra)/a) hz cos (irxja a)}.

Hence, if r' be the perpendicular distance between the con-
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ductor and the axis of the rotor, the torque glt which equals

/?', is given by

(/i
= (hJI^/2) (sin a - sin (2?r^/a

-
a)} + (h2H2r/2) sin (^Trxja

-
2a).

The torques due to the currents in the other conductors are

got by writing for x in this equation in succession x + 6, x + 26, . . .

x + (N2 1)6; thus the resultant torque g equals

sin a - (sin (N27rb/a)/sm (irk/a)}

x sin (27rx/a a +N2 7rb/a 7rb/a)]

+ (h.2 lI2r'/2) {sin( 2̂7r6/a)/sin(7r6/a)}

x sin (Z-rrx/a 2a +N27rb/a 7r6/a).

Now 6/a = 2p/N2) and therefore,

sin (N'27rb/a)/sin (irb/a)
= sin 2p7r/sin (2p7r/N2).

The right-hand side of this equation is zero except when
JV., = 2jj/??i,

where m is an integer. In this case it equals 2p/m t

when m is even, and 2p/m, when m is odd. Now, from first

principles, the effect of the mutual actions and reactions of the

rotor currents can add nothing to the rotor torque, and hence the

term containing h2 in the expression for g must always be zero.

It follows that when JV2
= 2p/m some of our assumptions are not

permissible. For instance, in a bipolar three phase induction

motor, if N2 were equal to 2, m would be unity. In this case it

is obvious that the intensity of the field in the air-gap due to the

rotor currents could not be represented by h2 cos (7rx/a a), as

the currents in both the conductors vanish at the same instant.

The field due to the rotor currents in this case is an oscillatory

one. The analytical discussion of this problem presents no diffi-

culty, but it is of little practical importance.

In practice N2 is in general greater than 2p, and so, the in-

stantaneous value g of the torque on the rotor is given by

and is therefore constant. In finding this expression, however,

it must be remembered that we have made sine curve assump-

tions, and that we have neglected the effects of the hysteresis

in the core.

222
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Another expression for the torque can be found by supposing

that an angular velocity
-

(&>i/p) is impressed on both the stator

and the rotor. We have thus a cylinder rotating in a fixed

magnetic field with angular velocity (co/p), and, if G be the

average torque, we have

G (a/p) = N,r,A 2
* =

(N,l"2) rjf,

where r2 is the resistance of a rotor conductor and A 2 is the

effective value of the current in it. We have neglected the re-

sistance of the end connections, but this can easily be taken

into account in practice by increasing the value of r2) in the above

formula, by an amount which can be estimated easily when the

shape and the resistivity of the end connections are known.

The effective voltage generated in a rotor conductor will be

approximately proportional to o>, since the flux cuts the conductor

with a velocity cor/p, and we may assume, therefore, as a first

rough approximation, that the effective current A 2 is proportional

to o)/(r2
2 + &>

2
jL

2

)
2

,
where L is a constant. Hence, we can easily

show that G has a maximum value when w = r2 L.

We shall now find the torque on the stator of an induction

The stator
motor when the rotor has a coil winding. In Fig. 157

torque. par^ of the winding of one of the phases of a three

phase induction motor is shown. It will be noticed that the coils.

Fig. 157. One phase of the winding of the stator of a three phase
induction motor.

of one phase are all wound in the same direction. The winding-
is therefore hemitropic. In practice there are several conductors,

in each slot, but, to simplify the figure, only one is shown. We
must now consider the fluxes on the stator side of the air-gap,,
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and, to simplify the analytical work, we shall suppose that the

stator has one slot per pole and per phase, and not two as in

Fig. 157. Consider a stator coil of length I and breadth 6, then,

as in the corresponding problem of the rotor coil (p. 333), we can

write

(f)'
=

<J>/ cos (TTX/O) <t>2

'

cos (irxfa a),

where
<f>'

is the resultant flux through the stator coil.
'

Owing
to magnetic leakage the values of <', 4>/ and <J>2

'

will be different

from the corresponding fluxes on the rotor side. In the above

formula x is the distance, measured along the air-gap, of the

moving origin from the middle point of the coil.

The velocity with which the origin moves round the air-gap

is dxjdt, and therefore, dx/dt = rcojp
=

aco^Tr. The primary current

i-L is in phase with <>/ cos (7r#/a), and hence we may write

ij
= /j cos (trx/a).

When working at the induction densities which are ordinarily

used in practice, <>/ and <!>,/ are approximately proportional to

/! and I.2 respectively. We may, therefore, write

3V = A^/!, and 3>2

' = M'NJ*

where L^ and M' are constants. Now let f be the tangential

magnetic force acting on the coil and the part of the stator

between the two slots, and let g be the moment of /i about the

axis of the rotor. Then, we have

f^lxjdt = gl (u>\lp)
= the power given to the rotor by the stator coil

= v*! -=- }</ cos (iras/a) 3>2
'

cos (irx/a a))

= - (L^NJfa/2) sin (2irar/a)

H- (^/
/

w1 -/V2/i/2 ft)i/2)
2 cos (TTX/O) sin (irxja,

-
a).

Thus gl
=

(pi 2) ^Wj JVj/j
2 sin (2?r^/a)

-
(pl%) M'^NJJ* {sin a - sin (2-Tr^/a

-
a)}.

The torques on the two neighbouriug coils, each belonging to

a different phase winding, can be found from gl by writing x -f 2a/3
and x 2a/S for x respectively. Hence, we easily find that the

resultant torque g3 due to the three coils is given by

g3
= -

(p/2) M'S^NJJ* sin a.
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Since there are N^n^ coils in the stator, p. 334, we have

where g' is the total torque on the stator due to the currents in

the rotor.

Since action and reaction are equal and opposite, the torque g'

The self and
actmg on the stator must be equal to the torque g

mutual acting on the rotor. We find therefore by comparing

(c), p. 336, with (d) that M = M'. For this reason the

coefficient M is called the coefficient of mutual induction between

a turn of the rotor winding and a turn of the stator winding.
The coefficients Z a and L2 are called the coefficients of self induction

of a turn of the stator winding and a turn of the rotor winding

respectively. In^ approximate work we may assume that they are

constants. For particular types of motors empirical formulae for

calculating Ll} L2 and M are sometimes given.

The leakage factor <r of an induction motor is defined by

The leakage ^ne equation
factor. (7=1- M^LJj*.

It can also be written in the form (pp. 334 arid 341)

Hence, we see that the smaller the magnetic flux <X>j, due to the

stator currents, which enters the rotor, the greater will be the

value of o: Similarly, the smaller the magnetic flux <>
2

'

in the

stator due to the rotor currents, the greater will be the value

of cr. The smaller the magnetic leakage, therefore, the smaller

will be the value of a. When there is no magnetic leakage cr

is zero, and when there are no magnetic linkages a is unity.

In good machines, a generally lies between 0'03 and 0*05. Its

value depends mainly on the number and depth of the slots and

on the size of the air-gap. The greater the air-gap and the

deeper the slots, the greater will be the magnetic leakage, and

hence the greater the value of cr. The calculation of cr directly

from the dimensions of the machine, and the data of its magnetic

circuit, would be very difficult. Designers of induction motors use

empirical formulae, but, as a rule, these formulae are obtained by

studying the results of tests on different types of motors and not

from theoretical considerations.
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Let us now consider the equation for the current in a phase

winding of the stator. The number of turns of the

in a stater winding will be JV^/Sri,. Let (J^/Sn^ be the P.D.

applied at the terminals of this winding, and let rx

be the resistance of a single turn. Then, if ^ be the current in

the phase winding, we have

e1
= r^ dfi/dt

= rlll cos (irx/a) + o)^/ sin (irxja) 6>i<E>2
'

sin (?r^/a
-

a),

and thus

e!/V2 = rlA l cos (irxfa) + LlNl a) l
A l sin (TTX/O)

MN^Ar, sin (iras/a a),

where A^ and A z are the effective values of ^ and iz respectively.

This equation can easily be discussed graphically. In Fig. 158

Fig. 158. Diagram illustrating the working of an induction motor when

supplied at constant current.
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let OA be equal to r^A^. Draw AB at right angles to OA and

make it equal to L1Nl colA 1 . Make the angle ABC equal to a,

and make EG equal to MN2 co1A 2 . Then OC will represent F/
in magnitude and phase, where (N1/3nl)Vl

/

is the effective applied

voltage per phase winding.
Draw CD at right angles to BC meeting AB in D. Then

BD = BC/coscL = MN2 co lA 2 (3>l/3>2) by (4), p. 334,

and thus BD = (Mz

/L lL2)LlNl a)lA l .

Therefore AD = a . AB.

If the stator of the motor were supplied at constant current,

A l would be constant, and so OA and AB (Fig. 158)

piuS
>r

at
Up "

would also be constant. Hence, since AD = a . AB,

current*
^ ^s a ^XQ^ point, and therefore, since DCB is a right

angle, the locus of C is a semicircle described on DB
as diameter.

If
\fr

be the phase difference between ^ and elt the angle AOC
(Fig. 158) will equal i/r,

and the power given to the stator winding
will be ViAi cos ty. Draw CN at right angles to AB. We have

F/A cos ir
= A, (OA + CN) = nA2 + ^i - CW.

If we neglect the hysteresis loss in the stator core, A 1 . CN will be

the power given to the rotor, and therefore

GX = N, . A, . CN,

where G is the mean resultant torque on the rotor. Since A l is

constant CN will be proportional to the torque on the rotor. It

will obviously be a maximum when N bisects BD, and in this

qase a is 45. It will be seen that this diagram would be a very
useful one for studying the working of an induction motor when

the stator is supplied at constant current.

In practice, the effective value of the potential difference

applied to the stator terminals is maintained con-
Apphed poten- .

tiai difference stant. In order to simplify the problem, we shall

make the supposition that r-^A^ is negligible com-

pared with F/. This is often permissible in practical work. In

Fig. 158 the points and A will now coincide. In Fig. 159, AC
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represents the effective value F/ of the P.D. acting on one turn

of the stator winding. AB represents L1Nl o)1A l and GB represents

JUNTAS. AP is drawn at right angles to AB and its direction

gives the phase of the stator current. If cos ^r denote the power

factor, the angle CAP will be ^. Draw CD and BF at right angles

to CB, meeting AB in D and AC produced in F. We have

BD = BC/cos OL = (l/
2

/A 2) L.N^A,,

and thus, as before, AD = a . AB. But by similar triangles

Therefore, since F/, and consequently AC is constant, AF is

constant, and F is therefore a fixed point. Since the angle CBF

A A 9 Q K H

Fig. 159. Diagram of an induction motor working at constant P.D.

is always a right angle, the locus of B is the semicircle described

on CF as diameter. We shall denote the angle BFC by 6 so that

TT 6 is the phase difference between F/ and A 2 . Since the angle
ABC is a, we have

tan 6 = BC/BF = (BG/CD) (CD/BF) = cot a (CD/BF) = a- cot a.

In Fig. 159 make AP equal to A lt then, since

AP/AB = l/L lNlw 1
= a constant,

the locus of P is a circle described on GH as diameter, where

and so GH =
(I/a-

-
1) AG.
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Since the triangles AGP and AGE are similar, it follows that

and so GP = nA U) where n = MN.2/L lNl .

The angle APG equals a and the angle PHG equals 6. Now,
since tan$ = crcota, we have by (2), (p. 334),

tan 6 = a (L2N2 (o/rz)
= so- (L2N2 (Oi/r2).

If 9S be the value of 6 when o>2 is zero, that is, when the rotor is

at rest, and consequently when s equals unity, we have

tan Os
= o- (ZgjfaWj/r,),

and thus tan = s tan 8 .

In Fig. 159 AG is the value of the stator current when the

rotor is revolving at synchronous speed. We shall denote it

by AQ. By projecting the sides of the triangle AGP on AH and

*AF respectively we get

A l sin -^ AQ = nA 2 sin 0,

and A l cos ^ = nA 2 cos 6.

If G denote the average torque, we have

G^ = the mean power given to the rotor

= N, V^A, cos ^ = N, F/ . PK,

if PK be drawn at right angles to AH. Hence PK is proportional

to the average torque.

If we leave out the semicircle described on the vertical line in

The circle Fig. 159 we get the simplified diagram shown in

diagram.
j?ig. 160. This is generally called the circle diagram

or the Heyland diagram of an induction motor. In the figure

AX gives the phase of the voltage FJ applied at the terminals of

a stator winding, AG represents the stator current in a phase

winding at synchronous speed, and AP gives this current when

the phase difference between the stator current and the applied

P.D. is the angle PAX. Let AQ denote the stator current in this

phase winding when the rotor is at rest, so that qVl . AQ . cos QAX,
where q is the number of phases, equals the average power ex-

pended in heating the rotor in this case. We shall denote AG
by AQ, AQ by A s ,

and the current AP at any load by A^ The
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angle PAX is -^ and the angle PHA is 6. The angle QHA we

shall denote by S .

It is to be noticed that in proving the theory of the circle

diagram we have assumed that the stator windings are exactly

Fig. 160. The Circle Diagram.

AH=A
Ql<r,

s = = G
g (PKIQL).

symmetrical. When they are connected in star and the winding-

is three phase, the applied voltage per phase is V3F,, and A l is

the current in a main. When they are connected in mesh, the

applied voltage per phase is Flf and V3Fj is the current in a

main. In either case 3 VlA l cos^ is the power given to the stator.

Produce HP and HQ to meet AX in D and X respectively,

and draw PK and QML at right angles to AH. Since

the power factor is the cosine of the angle PAX, it

follows that the power factor is a maximum when AP is a

tangent to the circle. In this case

and thus
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If G be the centre of the circle, CP will be at right angles to AP,
when AP is a tangent, and so, in this case

coso/r
= CP/AC= {(l/<r-l)A /2}/{(I/<r + I)A /2}

= (1
-

<r)/(l + <r).

We have already shown that tan = s tan S ,
and that PK is

proportional to the average torque, and hence

the slip
= s = tan 0/tan S

= ADIAX,
the average torque

= G=GS (PK/QL),

where Gs is the mean torque at
' stand still/ and if

77,. denote the

electrical efficiency of the rotor, we have (p. 330)

^=1_ 5 ^1- AD/AX = DX/AX = QM/QL.

Since ijr
=

0)2/0)!
we also have

<*,
=

<*, (QM/QL).

The following trigonometrical expressions for A lt G and
i/r

will

be found useful. Since the angle GPH is a right angle, we have

Now AS = AH* + HP*- 2AH . HP . cos

=A2

/<r
2 + (V

" -
!)

2
^o

2 cos2 0-2 (A2

/-) (l/o-
-

1) cos2
0,

and thus

A l
= (A /a) (sin

2 6 + o-
2 cos2

0)*

=A {1 + (s
2 tan2

s)/^/(l + s2 tan2
0.)* ............ (10).

We also have

G = GS (PK/QL) = Ga (PH sin 0/QH sin <9S )

= Gs (cos sin #/cos S sin g)

= ft tan 0/{cos S sin S (1 + tan2

0)}

=
sft/(cos

2
S + s2 sin2

S) ........................ (11).

Again we have
ta,i}.ty

= AK/PK, and so

tan ^ = (A ()
+GH. sin2

0)/(GH . sin cos 0)

=
(o- cos2 + sin2

0)/{(l
-

a) cos sin 0}

=
(o- + s2 tan2

0)/((l
-

a-) s tan 0,}.

Hence

cos2

i|r
=

{s
2

(1
-

o-)
2 tan2

8}/{(l + s2 tan2
8) (o-

2 + s2 tan2
S)}

. . .(12).



XII] INDUCTION MOTOR FORMULAE 349

Since the torque has its maximum value when K coincides with

C, that is, when 6 is 45, and

A! = (AJo) (sin
2 6 + o-

2 cos2

0)*,

we find that in this case, A l
= A {(1 4- <r

2

)/2o
3

}
.

If jy be the power expended in heating the rotor when the

stator current is A lt and H8 be the power expended when the

rotor is at rest, we have, since H is proportional to J. 2
2
,

H/HS
= GP*/GQ* = GK/GL.

Let us suppose that the leakage factor a for a given induction

Numerical niotor is O'l and that crL^N^Jr^ = 40/9. Let us also

example.
suppose that we wish to know how the primary current,

primary power factor and the torque vary with the slip.

Since tan 6S
=

40/9, we find that sin S
= 40/41 and cos 6S

=
9/41.

Substituting these values in equations (10), (11) and (12) we get
the equations to the required curves which can then easily be

plotted (Fig. 161). It will be seen that the starting torque is

Power
Factor

0-8

/f )rq

Current

Amperes
or Foot-

12Q
pounds

100
AI

80

60

G
40

COS l

20

0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0'9 1-0 slip

Fig. 161. The torque, power factor and current of an ideal induction motor

for various values of the slip.

less than half the value of the maximum torque and that the

maximum power factor is not obtained until the slip is about 0'07.

In order to reverse the direction of rotation of the rotor, it is

necessary to reverse the direction of rotation of the
Reversing the
direction of rotary magnetic field. This may easily be done by

reversing the connections with one phase of the
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stator winding. Let us suppose that the motor is three phase.

Before the alteration is made we may express the gliding magnetic
field in the air-gap (see Vol. I, p. 294) by

H sin cot cos (Trx/a) 4-H sin (cot + 2w/3) cos (irxja 4 2-7T/3)

+H sin (cot 4 4-7T/3) cos (irxja 4 4?r/3),

which is equal to (3#/2) sin (cot irxja).

After reversing the leads across the first phase the field is

represented by

H sin cot cos (TTX/a) H sin (cot + 4-7T/3) cos (THE/a + 2?r/3)
- H sin (cot 4- 2-7T/3) cos (irxja 4 4?r/3),

that is, by (3#/2) sin (cot + irx/a).

The fields in the two cases are therefore rotating in opposite

directions.

It will be seen that the final diagram (Fig. 160) representing

Transformer tne working of an induction motor is identical with

analogy. tne diagram of the ideal transformer (Fig. 105, p. 229).

The no load current of the transformer corresponds to the current

per phase of the stator when the rotor is running at synchronous

speed, and the starting current per phase of the motor corresponds

to the primary current in the transformer when the secondary is

short circuited.

When the rotor is at rest, the varying magnetic flux due to the

currents in the stator coils will induce an E.M.F. in the rotor winding

the magnitude of which is (MN^jL^N-^ V^ per phase. The action

is analogous to the induction between the primary and secondary

oils of a leaky transformer. When the rotor is running, there

will still be an electromotive force induced in its windings. The

rate of the variation of the flux, however, linked with the rotor

coil will now be diminished in the ratio of 1 to s, and thus the

E.M.F. developed is s(MN2/L lN1) V1 per phase. It must be noticed

that, unlike the load on the secondary of a transformer, the load

on the rotor is partly mechanical.

Let us now consider the power expended on the stator wind-

ing. Part of it is taken up in heating the stator conductors and

part in producing hysteresis and eddy current losses in the core.

The remainder is available for the rotor. The electromotive



XI I]
TRANSFORMER ANALOGY 351

force s(MN9/LlNl) Vl induced in the rotor winding produces a

current, and energy is absorbed in the rotor conductors. The

eddy current and hysteresis loss, caused by the leakage flux due

to the rotor current, also absorbs energy. In addition, power is

required to overcome the friction of the bearings, which is usually

called solid friction, and the damping effect of the air, or air

friction. What is left is available for overcoming the retarding

torque due to the load on the pulley of the rotor.

We have seen that when G is the torque on the rotor, Gw^
is the power given to it and Go) is the power expended in

heating the rotor together with any external power that may be

expended by the rotor leakage flux in hysteresis and eddy
currents. If we represent the heat given to the rotor per phase

by R2A<?, we have

oh = Gto/s
= 3jM ay* = (3R2/s) Af,

when the motor is three phase. Thus the power given per phase
to the rotor is the same as the power given to the secondary
circuit of a transformer which carries a current A a and has a

resistance R.2/s.

If W be the no load losses per phase of a motor, the equation
for the primary watts Wl per phase is approximately

W, = W + (0/3) Wl + R, (A* - A*\

where RA is the power expended in heating the stator winding.
If we suppose that RI is negligible, we have

In the simplified diagram (Fig. 160) the stator current at

synchronous speed A is drawn at right angles to AX as we

neglect the stator losses. Draw AX, AG and AP (Fig. 162)
to represent the applied primary voltage Vlt the stator current

A at no load, and the stator current A l when the slip is s.

Draw GH perpendicular to AX, and PH perpendicular to PG,
and on GH describe a semicircle. We shall prove that P always
lies on this semicircle (compare with Fig. 147, p. 319).

Let F! be the effective value of the potential difference

applied to any winding of the stator. The electromotive force

induced in the corresponding rotor winding will be s(MNJL1N1) Vlf
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If R2 is the resistance of this winding, A 2 the current in it, and

the phase difference between F, and A a ,
we have

cos 6 = -

If A l and cos fa be the current and power factor respectively

of a stator winding, and if the motor be three phase, we have

Fj^, COS fa = F^o COS fa + (G/3) ft)j

and thus A l cos fa = A cos fa + (MNJI^N^ A z cos 6.

x

A N

Fig. 162. Diagram of the working of an induction motor, stator losses

being taken into account.

Now 6 is the angle between GP and AX, and therefore

GPcos0=PK (Fig. 162)

= A l cos fa A cos fa

= {MN^LJf-^ J-2 cos ft

and hence GP = (MN./L.N,) A 2 .

We have also shown, p. 346, that

From this and the value of cos 6 at the top of the page

sin 6 = LJffr^Ailfi (MNJ.

and GH = GP/sin 6 = 3 (M/L.N,)
2

{
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Thus H is independent of the position of P and, since the angle

GPH is a right angle, P must lie on the semicircle GPH. We
conclude therefore that the current in a stator winding varies

with the load on the rotor in exactly the same way as the current

in the primary of a properly chosen transformer would vary when

a non-inductive load on its secondary is varied. The '

coefficients

of self-induction' of the primary and secondary coils of the trans-

former must equal L^N? and L^N^ respectively, and the mutual

induction between them must be equal to MN^N^. The leakage
factor a of this transformer is consequently equal to the leakage
factor of the motor. When the slip of the motor is s the resist-

ance of the secondary circuit of the auxiliary transformer is R2/s.

We have shown in Chapter xi that, for purposes of calcu-

lation, we may replace a leaky transformer by a

simple equivalent net-work. We can also use the

same net-work for calculations in connection with

induction motors. If s be the slip produced by a given mechanical

load, the electrical load in the secondary circuit of the auxiliary

transformer is a non-inductive resistance the value of which is

Rtjs. Thus if we place a non-inductive resistance R2/(sn
2

) in the

secondary branch of the net-work which is equivalent to this

transformer, the primary current, and therefore the current in the

stator of the motor can be found.

Since the useful mechanical power that we can get from a

motor equals (3R2/s) A<?, it will be seen that it is immaterial whether

we use a low ratio of transformation MN^LJf^ and therefore

thick wire coils with few turns on the rotor, or a high ratio and

fine wire coils of many turns, provided that the total heat

developed in the rotor is the same in both cases at the same slip.

The value of the leakage factor a, however, which depends on the

values of M, L^ and Z2 ;
has a very great influence on the working

of the motor. In practical work it has been noticed that the

number of bars in squirrel-cage rotors is immaterial. The

General Electric Company of America use the same squirrel-cage

rotors for stators wound for various voltages. They also use the

same rotors for machines with two phase and three phase stator

windings.

R. n. 23
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If the rotor revolve at a speed greater than synchronism, the

slip becomes negative. P' (Fig. 160) is then below the
Speed greater .

r
,

than synchro- line AH so that the torque is also negative. Hence

the rotor gives power to the stator, the machine

acting like an alternator. It will be seen that the retarding

torque increases as co increases until is 45, it then diminishes

for greater values of w.

This property of induction motors is sometimes utilised in

electric traction work. When a train is descending an incline,

so long as the angular velocity o> 2 of the rotor, which is geared to

the axle, is less than a>lt power is taken from the mains, and an

accelerating torque is produced. When <w2 equals a>lt the accele-

rating torque is zero, and when o>2 is greater than col the motors

act as brakes to the train and power is given to the trolley wires.

It will be seen that induction motors regulate to a certain extent

the speed of the train, their action in this respect being very
similar to the action of direct current shunt wound motors.

Should however the speed of the induction motors become greater

than (o)i/p) (1 + *') where s is the slip at which the maximum

torque is produced, the torque, and therefore, also, the braking
action will diminish as the speed increases. In this respect they
differ from direct current machines.

If the power W-i supplied to the stator of an induction motor

be read by means of a suitable wattmeter, and a

induction mechanical load 6r2o>2 be applied to the rotor pulley

by means of a Prony brake or other simple form of

absorption dynamometer, the efficiency T? is given by the formula

***/ Ft.

In this formula 6r2 is in joules. This method is simple and can be

applied easily when the motor is small. In the case of large

motors the method is troublesome and expensive, and therefore

approximate electrical methods are employed.
It is useful first of all to construct a circle diagram similar to

Fig. 162. In order to do this we need to know the power and

the current taken by the stator at no load, and also the power
taken by the stator at stand -still. With our usual notation,
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and thus cos^
if the motor be three phase and V1 is the voltage applied at the

terminals of a stator winding.

Similarly we have

where the suffix s gives the values of the quantities at stand-still.

To construct the diagram we draw a line AG (Fig. 162) equal to

A and make the angle XAG equal to
i/r

.

We draw a line AS equal to A 8 and inclined to AX at an

angle ^rs . We then join GS, and draw a line bisecting GS at

right angles and cutting the line GH at C, which will obviously
be the centre of the circle required.

For example in a three phase induction motor, star-connected,

WQ was equal to 1824 watts, A to 8*8 amperes, and V&Fi was

460 volts. Thus

cos ^ = 1824/(V3 x 8-8 x 460) = 0*260,

and therefore
i/r
= 74*9.

In determining the current at stand-still, precautions have to

be taken, otherwise the large currents generated may damage the

stator or rotor windings. It is customary to reduce the applied

potential difference, preferably by diminishing the excitation of

the generator. The amperes and watts per phase are then read

for various values of the applied voltage, and from the results the

values of the corresponding quantities at the normal voltage are

deduced by drawing curves. For the motor considered above the

following results were obtained :

Applied voltage
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and thus A s cos^s
= 13000V3/460,

= 48-9.

Therefore also cos ^s
=

48'9/184'5,

and ^s
= 74-6.

We have thus sufficient data to construct the circle diagram
and hence we can find the slip and the efficiency at various loads.

When the applied waves are sine shaped, this method gives

satisfactory results, but even in this case it is advisable to

check our results by some more direct electrical method. For

instance, suppose that W^, W ,
A 1} A Q ,

R: and s can be measured.

If the motor is three phase, 77 is given by the formula

,,
=

(1
-

) {
W

t

- W, - m, (A?
-

A,-)}/ W, .

Thus values of rj can be found for various loads.

The following are the results of a test by Larmoyer on a

32 H.P. three phase induction motor with eight poles. The

connections for the test are shown in Fig. 163. To start the

i
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the stator windings when warm was 019 ohm and the no-load

current was 8'8 amperes. Thus

SAfR! = 3 x (8-8)
2 x 0-19 = 44.

The wattmeter reading W at no load was 1824. At the

normal load A^ was 36"6 amperes, Tfj was 26800 watts, and the

number of revolutions per minute was 730. Thus

s = (750 -730)/750 = 0'0267

and 1-5 = 0-9733.

Therefore, by the formula on p. 356,

77
= 0-9733 (26800 - 1824 - 0'57 x 36'62 + 44)/26800 = 0'88.

Thus the efficiency is 88 per cent.

The results of tests on a 720 horse power three phase induction

motor having eight poles are shown in Fig. 164. The effective
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was 7'5 amperes and the power expended was 15000 watts. In

starting the motor the potential difference applied to its terminals

was gradually increased. At 1000 volts it began to turn slowly.

The stator resistance per phase was 0'67 ohm and the rotor resist-

ance was 0'0035 ohm. It was found that the leakage factor a was

0'0268. The slip at full load was T3 per cent., that is, s was

0'013, the maximum value of the efficiency 95'0 per cent, and of

the power factor 0'952.

Fig. 165. Curves for an Oerlikon 350 H.P. three phase induction motor.

Speed 90 turns per minute. Applied voltage 1000.

f]
= efficiency ;

cos ^ power factor
;
A

t
= current per phase ;

s = slip.

The abscissae give the mechanical output y . -v/SF^j cos ^ in kilowatts. One
kilowatt is 1-34 horse power.

The curves shown in Figs. 165 and 166 were obtained by

HI hs eed testing two induction motors of the same power
and low built by the Oerlikon Company. The}' were both
speed motors. .

intended to work pumps, but whilst one had to run

at the abnormally high speed of 980 revolutions per minute

the other had to run at only 90 revs, per minute. The applied
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voltage for the high speed motor was 2000 per phase and for the

low speed motor 1000 per phase, the frequency being 50. At

synchronous speed the low speed machine took 63'5 amperes per

phase and the power factor was 0'089. The corresponding numbers

for the high speed machine were 171 and 014 respectively.

Fig. 166. Curves for an Oerlikon 350 H.P. three phase induction motor.

Speed 980 turns per minute. Applied voltage 2000.

77
= efficiency ;

cos
\f/
= power factor

;
A- current per phase ;

s= slip.

The following table gives the most important of the results

obtained. The data for an ordinary three phase induction motor

of the same power made by the Oerlikon Company are also added

for purposes of comparison.

Revs, per
minute
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WE shall now show how to calculate the ampere turns which are

equivalent to the mean value of the magnetising

ampe?" turns forces acting on the armature. Let us suppose that

w
f

in

h
d
e

in

n

g
d
s

u
of

n8: the winding of one phase of the stator of the asyn-
asynchronous chronous motor is similar to that of the field magnetsmotors.

of a direct current machine, so that when a current

is flowing in it we get p segments of South, and p segments of

North polarity with spaces between the adjacent segments which

are subjected to no magnetising force. We shall also suppose that

there is one slot per pole and per phase. We have therefore,

in the first place, to find the equivalent ampere turns of an

elementary rectangular coil, two of the sides of which are placed

in two parallel slots on the inner circumference of the stator. Let

the coil have N turns, and let the distance measured along the

air-gap between the axes of the two slots be denoted by b'. Let

the distance also measured along the air-gap, between the middle

points of two adjacent coils of the same phase be a. The polar

step of the flux in the rotor will also be practically equal to a, as

the air-gap is always very narrow.
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Let 0' be the point on the stator midway between the axes of

the two slots containing the elementary coil considered, and let O
be the point on the rotor opposite to 0' when the current i in the

elementary coil has its maximum value /. If as be the distance,

measured along the air-gap, of from 0' at the time t, then, if

the current follow the harmonic law and we assume that the slip

is zero, we may write

i = I cos (%7r/T) t = I cos (TTX/O),

where T is the period of the applied P.D.

Let us now find the mean magnetising force in ampere turns

acting during the time T on a point F (Fig. 167) on the cir-

cumference of the rotor. From symmetry this will be equal to-

K ~y -x

1
^O Y 'B P

Fig. 167. Equivalent ampere turns of the stator windings.

the mean value over the half period. Let y be the distance of Y
from 0. Then, during the passage from Y to B the ampere turns

acting on Y are Ni
;
from B to C, they are zero, and for the rest

of the half period they are Ni. The mean value, therefore, of

the ampere turns &' acting on Y is given by

( rb'/2-y fa
}

$' (I/a) \
NI cos (TTX/O) dx I NI cos (iras/a) dx [

(JO J a-y-b'/2

f rb'/'2-y rb'l-2+y \

= (Nila) \
cos (TTX/O) dx + I cos (irx/a) dx\

(Jo Jo )

=
(2/7r) NI sin (7r&72a) cos (iryja).

The mean magnetising force J/s therefore, from P to P' (Fig. 167)

is given by
[+al'2&= (2/7r) NI sin (7rb'/2a) . (I/a) cos (vry/a) a

7

?/

J -a/2

This formula could also be obtained by putting b = a in the

formula given on p. 38. For a simple wave winding b' = a, and

thus

$= (4/7T
2

) NI = 0-4JV7 nearly.
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We shall next find formulae for the magnetising forces due to

the currents in polyphase windings. We shall first
The equivalent

J r
ampere turns consider a separate phase winding (Fig. 168) with an
of separate

r

phase wind- even number of slots per pole and per phase. In

separate phase windings the conductors belonging to

one phase are placed in 2p/ij slots, which form 2p groups each

containing n^ slots, and no conductors belonging to other phases
are placed in these slots. Since we are merely concerned with

finding the equivalent ampere turns acting on the magnetic
circuits linking the coils of the stator and rotor, we may suppose

o o OXXXX++++O O Q

Fig. 168. Separate phase winding with an even number of slots per pole and

per phase. The slots marked O, X or + contain conductors belonging to one

phase only.

that the ends of the conductors are joined by connecting wires

so arranged that the conductors and connecting wires form a

number of elementary coils. We can then find the equivalent

ampere turns for each coil by the formula given above, and hence

the resultant ampere turns can be found by adding the results

together, since the integral of the sum of n quantities is equal to

the sum of the integrals of the n quantities.

Since rij is the number of slots per phase in the polar step,

qn^ is the total number of slots in it, and 2p<^i is the total number

of slots on the stator. Let N! be the total number of conductors

per pole and per phase, so that ZpN is the total number of

conductors in a phase winding. Let us first consider the coil

belonging to the windings of one phase which has the greatest

breadth 6lt If a be the polar step, we have bl/a
=

(qn l l)/qn1}

and thus irbi/^a
= (?r/2)(l l/qn^). Similarly if b2 ,

b3 ,
... be the

breadths of the other coils we have

7r62/2a = (7T/2) (1
-
3/0*0 ;

7r63/2a = (Tr/2) (1
-
o/qnj ;

. . . .

Hence, noticing that the number of coils is /ij/2 and that the
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number of turns in a coil is N^/n^ we get for the resultant

equivalent ampere turns $ of the q phase windings per pole

I {sin (ir/2
-
Tr/2^0 + sin (ir/2

-

JnJ I [cos (Tr/2^) + cos (3^/2^) + .

+ cos
{(

sin (7r/2^)/{7i1 sin (Tr/2^)}.

Now let w be the total number of slots and N the total number

of conductors belonging to a phase winding. We have n^ nj^pq
and N! = N/2p. Substituting these values of n^ and NI in the

above formula we get

^=(2q*/7r*)NA A/2 sin (ir/2q)/{nsm(pw/n)} ...... (1),

where A is the effective value of the current in a winding.
Formula (1) still holds when there is an odd number n^ of slots

per pole and per phase. To prove this, let us consider the arrange-

ment of the conductors indicated in Fig. 169. When there is an

ii
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Let us finally consider the equivalent ampere turns of a super-

posed phase winding. In one form of this winding,The equivalent
ampere turns slots only contain conductors belonging to one phase ;

of superposed .... .

phase wind- in which case alternate slots contain conductors ot

different phases. In another form (Fig. 170) each

slot contains an equal number of conductors of different phases.

I

Fig. 170. Superposed phase winding in which each slot contains an equal

number of conductors of different phases.

These windings are sometimes employed to obtain a flux distri-

bution which will be approximately sine shaped.

Let n-i denote the number of slots per pole containing con-

ductors in one phase. Then whether rij/2 be odd or even we may
suppose the ends of the conductors joined as in Fig. 170. In this

case

Therefore

$' = (4^/7r
2

) (NJnJ /[cos (vr/qnj) -f cos (^Tr/qn^ + . . .

+ cos{(n1 -l)7r/qn 1}]

=
((fl-rr^ NA V2 sin (ir/q)/{n sin (p-jr/n)} ..................... (2),

noticing that n is equal to pqn^ in this case.

By comparing formulae (1) and (2) we see that when N, p
and n have the same values for a separate phase winding and a

superposed phase winding,

Thus the magnetising force, and therefore the flux, is always

greater with the separate phase winding.
In proving the above formulae we have made the assumption

that the total number of slots is a multiple of the number of poles

(2p), so that % is an integer. In alternators and induction motors

as usually constructed the number of slots is frequently not a

multiple of the number of poles. This considerably increases the

difficulty of calculating the equivalent ampere turns. Approximate
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values, however, can be obtained from formulae (1) and (2), and

these formulae, which are due to C. F. Guilbert, are used in

practice for this purpose.

Ordinary forms of induction motors are practically constant

speed machines as the slip is very small. Even at

^TJed'crf

th
full l ad it is sometimes only two or three per cent.

induction j most machines the torque on the rotor is a
motors. T-

maximum when the slip is less than twenty-five per

cent., and if we increase the load so that the slip is greater than

this, the rotor rapidly slows down to rest. One method of getting

a good output from a motor at different speeds is to have several

sources of alternating current supply each at a different frequency.

This method is limited in its application, but when motors are

directly coupled to heavy rotating apparatus in which a consider-

able amount of kinetic energy is stored the method is useful, as

economies can be effected by first starting the motors from the low

frequency mains and then switching them on to higher frequency

mains as their speed increases.

At the Sugar Refinery of Cambrai, induction motors are

employed to turn sugar turbines. When rotating

sources of at their normal speed the kinetic energy stored in

supply avail- each turDme is 125,000 kilogramme metres (904,000

foot pounds). In starting a motor coupled to one

of these turbines the expenditure of energy is about 300,000

kilogramme metres, owing to the unavoidable losses due to the

resistances of the motor itself during the start and to friction.

To minimise these losses three sources of polyphase currents

having frequencies of 21, 35 and 50 are employed. The current

which has a frequency of 50 is supplied by a Boucherot alternator.

The currents having the two other frequencies are obtained by
means of a smaller alternator running at 420 revolutions per

minute, and driven by means of a belt from the flywheel of the

larger machine. This machine is of the inductor type with two

fixed armatures, the rotor having three polar projections on one

side and five on the other, so that the frequencies of the induced

currents are in the ratio of 3 to 5.
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In starting the motor at successively increasing frequencies,

the losses during the start are considerably diminished. In

addition, instead of all the kinetic energy stored in the turbines

being lost during the stopping of a turbine, a considerable pro-

portion of it may be recovered by switching the motor in turn

on to circuits of diminishing frequency. The reason of this will

be understood from the diagram of the induction motor (Fig. 160)

described in the last chapter.

When the supply frequency is fixed, it is necessary to modify

the design of an induction motor if a variable speed be desired.

Three methods of doing this are used in practice. In the first

method the polar pitch of one set of poles equals the winding

pitch of the rotor, and the polar pitch of another set of poles

equals a multiple of the winding pitch. It is easy to arrange,

for instance, by means of a special switch, that the number of

poles be either n or 2?z. In the former case the rotor will run at

double the speed it does in the latter. In this motor the rotor is

generally of the squirrel-cage type, and hence we are confined

to two speeds only, as it is difficult in practice to interpolate

resistance in the windings of this rotor.

The second method is to vary the applied potential difference

by means of a compensator (p. 289) and have a suitable resistance

in the rotor circuit. This method is not recommended. The

efficiency of this type of motor is very low at the slow speed,

and so a large motor must be employed for a comparatively
small load. The third method is simply to vary the resistance of

the rotor circuit. This procedure lowers the efficiency of the

motor so much that it is only permissible when variable speeds
are very seldom required.

It will be seen that, of the methods of varying the speed of

induction motors, the most satisfactory is to design the motor so

that the number of poles of the stator windings can be altered by
some simple commutating device. We thus get two speeds at

which the motor will run, and its speed does not appreciably vary

from the set speed as the load increases. In the second and third

methods, if the speed is to be maintained constant, every change
of the load makes it necessary to readjust either the applied

potential difference or the rotor resistance.
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When we have two induction motors, one of which has slip

rings on the axis of its rotor, it is possible to connect

^em so *kat tney run either in parallel or 'in

cascade.' To connect them in cascade the stator

terminals of the motor, which has slip rings on the axis of its

rotor, are connected with the supply mains. The stator terminals

of the second motor are connected with brushes pressing on the

slip rings of the rotor of the first machine. The two rotors are

also directly connected together by a suitable mechanical coupling
so that they run at the same speed. In electric traction both

rotors are mounted on an axle of the locomotive.

Let Sj_ be the slip of the first rotor, and n the number of

revolutions per second corresponding to synchronism, then the

actual speed of the rotor is n(l s^. Let 2p be the number of

poles in the stator winding, then the frequency of the alternating

currents induced in the rotor conductors is pns1 . The frequency

of the alternating currents supplied to the second machine is pns-t

and therefore, if 2p be the number of poles in its stator winding,

the synchronous speed of its rotor is ns-^. Thus, if sz be the

slip of the second machine, nsl (1 sz) will be the number of

revolutions made per second by its rotor. Since the two rotors

are direct coupled they must run with the same angular velocity,

and so we have
n (1 5j)

= nsl (1
- 52)

and hence 5X
= l/(2 sa).

Now the second machine is running under normal conditions,

and its slip s2 must consequently be small. The following table

gives the value of 1 s: for various values of sz . Since the rotor

*2
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definition a)
l
= o>2 + Si&>i ,

and thus, if G be the torque acting on

the rotor of the first machine we have

(&>! = rftJo -f

Now (TO*! is the total power given to the first rotor, and Gw2 is

the mechanical power given directly to it, and thus Gs^ is the

electric power generated in its conductors together with the power

expended in hysteresis and eddy current losses. We may therefore

write

Gs1 a) l
= G'o)s + WQ ,

where G'a)2 is the mechanical power given to the rotor of the

second machine and W represents the losses due to the heating
of the two rotors and of the stator of the second machine. We
thus deduce the following expressions for the efficiency rjr) p. 330,

77,
=

(! + '/) (o),/^)

-(I +

Hence the greater the value of the torque G' acting on the rotor

of the second machine, and the smaller the value of TT , the greater
will be the efficiency of the motors working in cascade.

Since it is immaterial whether we supply the stator or the

rotor of an induction machine with the alternating currents from

the generator, it is sometimes more convenient in practice to

supply them to the rotor of the second machine. In this case the

starting resistances can be connected across the stator terminals of

the second machine.

Let us now consider the case of m motors working in cascade.

We have as before

(2
-

and thus finally

*i
= {(m

-
1)
- (m - 2) sm}/{m - (m - 1) sm}.

This formula shows us that the slip of the first machine is greater
than (m l)/m. The angular velocity, therefore, of the rotors of

m induction motors connected in cascade will be slightly less than

R. ii. 24
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the mth part of the angular velocity of the rotating magnetic field

of the first motor.

Another interesting case arises when the stator windings of

two machines have different numbers of poles. Let us suppose,
for example, that the first machine has 2p poles and that the

second machine has 2q poles. If the rotating magnetic field due

to the first machine make n turns per second, the frequency of

the currents in its rotor is pns. Thus the magnetic field due

to the stator currents of the second machine will make (p/q)nsl

revolutions per second, and hence we have

n (1
- sO = (p/q) ns1 (1

- S2),

and therefore Si =!/{!+ (p/q) (1 sa)}.

If 52 be very small, n(I sj is equal to [p/(p + q)} n, that is,

fl(P + y)> wnere / ig tne frequency of the applied potential

difference. Thus, if we have two motors each of which has slip

rings on its rotor, the rotors will run at the same speed whichever

stator be connected with the supply mains, provided that the

motors be connected in cascade in each case.

The following figures give the results of a test, made by
Danielson, on a combination three phase induction

Combination motor which can be run at three speeds. The motor

consists practically of two induction motors mounted

on the same bed plate and having a common shaft

with three bearings. The main motor has 14 poles and its

maximum output is 200 horse-power. The auxiliary motor can

be connected either as a two pole or a four pole motor, and its

stator can be connected with the rotor circuits of the main motor.

When the main motor is run alone, its speed is 428 revolutions

per minute. When it is connected in cascade with the auxiliary

motor, the speed is either 428 {7/(7 + 1)}, that is, 375, or

428 }7/(7 + 2)}, that is, 333 revolutions per minute, depending on

whether the auxiliary motor is arranged to have two or four poles.

The output of the machine is practically the same at the three

speeds. In the following table, rj gives the percentage efficiency

of the main motor and of the main motor in cascade with the

induction
motor.
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auxiliary motor, and cos ty gives the power factor in the various

cases.

Output ...
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segments of the commutator are all connected together by strips

of high resistance metal, so that the rotor circuits are completed

by means of these resistances. The three brushes on the com-

mutator are connected with the secondary terminals of a three

phase transformer, the primary being connected with the mains.

Fig. 171. Principle of Heyland compensated induction motor. Connections of

rotor only are shown. S, slip rings for inserting resistances W into the circuit of

the rotor windings. E, resistances connecting the segments of the commutator.

T
1 ,
T2 and T3 are the terminals of the step-down transformer from the mains.

The ratio of transformation is so chosen that the pressure

between the commutator brushes is only about eight volts. If the

rotor were at rest, the frequency of the currents induced in its

windings would be the same as the frequency of the stator

currents. When it is running at its normal load, the frequency is

very small and thus the impedance offered by the rotor circuits is

small. The low voltage, therefore, is quite sufficient in certain

positions of the brushes to provide the necessary magnetising
current for the stator flux. The current in the stator is a

minimum for a certain position of the brushes, and in this position

the step-down transformer furnishes the leading currents in the

rotor circuits which are the equivalent of the condenser load in

the transformer analogy. It is found in practice that it is possible

to get a power factor which is nearly equal to unity by this

method. The stator windings are not shown in Fig. 171 as they
are the same as those of ordinary three phase machines.
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In Fig. 172 the connections of the stator of a three phase

induction motor for use in single phase circuits are

shown. The single phase supply mains Ml and Mz

circ
g
uits

phase are connected with the terminals T and T2 of the

stator and T2 and Ts are connected with the terminals

of an alternating current booster (see Chap, x) having a suitable

172. Connections of the stator of a three phase induction motor for use

on a single phase circuit Mlt M2 . B is an alternating current booster and K is a

condenser.

condenser placed between the load terminals. The high pressure

at the condenser terminals produces a large current flowing in the

condenser circuit, and, as in a transformer, the current in the main is

a leading current. Thus we get three currents in the three stator

windings in different phases and a rotary field is produced.

If we have a number of two phase motors each of which has

TWO phase
two seParate windings A and B, and if we connect

motors worked a\\ the A windings in parallel with a single phase

phase ma- alternator and also connect all the B windings of

the motors in parallel, then it is found that, pro-

vided that at least one of the motors is always running, the others

can be stopped and started and will work satisfactorily. This is

due to the currents induced in the rotors of the running machines

producing a rotating flux, which developes an electromotive force

in the B circuits of the stators, and thus they will operate almost

as well as when they are connected with a two phase machine.

It can be shown experimentally that the electromotive forces

developed in the B circuit of a machine when the rotor is re-
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volving at synchronous speed is about four-fifths of the potential

difference applied to the A circuit. The machine therefore acts

like a single phase transformer so far as altering the pressure is

concerned. The phase of the secondary electromotive force, in

this case, however, differs by a quarter of a period from that of

the primary.

We saw in Vol. I, Chap. XIV, that a rotating magnetic field

can easily be produced when polyphase currents are

singe
y
Phase available, and hence the design of polyphase induction

motors is comparatively speaking simple. If we

disconnect two of the phases of a three phase induction motor

when running, it will continue to run, but the stator current in

the phase still in circuit will be three times as large as it was

before the other circuits were broken. In this case we have the

rotor revolving in an oscillating magnetic field. Now if <E> be the

flux produced by the alternating current in the active phase of the

stator winding, we can, by the principles developed in Vol. I, replace

the oscillating field <1> by two rotating fields, the magnitudes of

which are <l>/2 revolving in opposite directions. The field ro-

tating in the same direction as the rotor will act like the original

rotating field on the rotor constraining it to revolve
;

its magni-
tude however is only one-third that of the original field for the

same current in the phases. If the new rotating field therefore is

to be equal to the old, the new current, assuming that the flux

and current are proportional, must increase three times. The

mean value of the torque produced by the field rotating in the

opposite direction to the rotor is very small. We see that if in

an oscillating magnetic field the rotor be brought up to speed

it will operate in much the same way as it would in a rotary field.

We shall now discuss the theory of single phase motors in greater

detail.

Let us suppose that we have an alternating magnetic field

fixed in space and that its intensity is given by B sin toj. Con-

sider a coil of wire having n turns, placed so that it can revolve

about an axis through its centre perpendicular to the lines of

force of the field and perpendicular also to the axis of the coil.

Let S be the mean area of the turns of wire, then if o>2 is the
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angular velocity with which the coil revolves, and
(/>

is the flux

embraced by the coil at the time t, we have

(f)
= BS sin coj . sin (co2t a)

= (BS/2) [cos ((<!
- &)2) t + a}

- cos ((&>! + a>2) $ - a}],

where a is a constant. Thus the torque produced is the same as

if the coil were fixed and we had two magnetic fields rotating

with angular velocities (o^
- &>2) and (^ + &>2) respectively in

opposite directions, the intensity of each of the rotating fields

being B/2.

Let r be the resistance, and I the self inductance of the coil.

Let 0! and ^ be the electromotive force and the current due to it

induced in the coil by the field which is rotating with an angular

velocity co l &>2 . We have

ej
=

nd(j>/dt
= (nBS/2) (co 1 a>.2) sin {(o^ ft>2) t + a},

and thus

i = (nBS/ZZJ (ft)i
- &)2) sin {(!

- &)2) t + a - &},

where

Z
l
=

[r
2
4- (! - ft>2)

2
/
2

]

1/2
,
and cos0l

= r/Z1 .

If ft be the average value of the torque due to this rotating

field, we have

ft Oi - o>2)
= (n

2B2S2

/SZl ) (ft)!
-

ft)2)
2 cos A,

and thus ft = (n*B*&r/8)(a>1
-

ft)2)/{r
2 + (Wl

- o>2)
a

P}.

Similarly we can show that if ft be the torque due to the other

rotating field, we have

ft = (?i
252

>S
2

r/8)(ft)1 + ft)2)/{r
2 + (ft)! + ft)2)

2
Z
2

}.

Hence if 6r be the resultant torque on the rotor, we have

G = ft - ft

This formula shows us at once that the torque vanishes when &)2 is

zero and that it vanishes again when &)2 equals Vcoj
2 r2

/^
2

. Now,

just as in a polyphase motor, the mechanical power given to the

rotor is 6ro>2 ,
and its electrical efficiency is therefore 15 where 5

is the slip. For economical working s ought to be as small, and
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therefore &>
2 ought to be as large, as possible. Hence a first

essential condition for a good single phase motor is that the ratio

of r to /Wj should be very small. If this ratio is greater than

unity, the motor will not work at all as the torque will always act

so as to prevent rotation. If r is less than co^, then as ft>2 increases

the torque G increases to a maximum value, it vanishes when ft>2

equals Va^2 r2
/

2 and becomes negative for values of a>2 greater

than this. The angular velocity of the rotor therefore can never

attain synchronism with either of the rotary components of the

oscillating field. We have seen that the nearer it can approach
to synchronism the greater will be its efficiency.

Let us now suppose that a>.2 is constant, and that we vary r.

We find by differentiating G with respect to r and equating to

zero that the torque has a maximum value 6rmax .
when r is

given by
r =

and since a>2
= o^ (1 s),

this becomes r = coj, {Vl 4- 2s s
2

1}.

When r has this value we get

and Pmax .

=(## ,/! 60 (1
-

s)
2
,

where Pmax .
is the greatest possible value of the mechanical power

given to the rotor when the slip is s. When s is small the value

of r which makes the mechanical power a maximum is nearly

equal to swj,. If r were less than this, then, adding resistance

to the rotor would increase the speed and thus increase the

efficiency of the machine.

We can easily draw curves to illustrate how the torque varies

with the slip. For instance, let the ratio of r to coj

e

N
xamp?e

cal
be as 1 to 10. Then if s be the slip for which the

torque is a maximum for this value of r, we have

VI + 2s -s2 - 1=1/10,

and thus 1 + 2s - s2 = T21,

and 5 = 011 approximately.
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In Fig. 173 the curve A represents the torque due to the field

rotating in the same direction as the rotor and the curve B repre-

sents the negative torque due to the field rotating in the opposite

Torque Y
in foot- 50

pounds
45

Slip

X Angular
Velocity

0-9 0-8 07 0-6 0-5 0'4 0'3 0'2 CM OO

Fig. 173. The curve C gives the torque on the rotor of a single phase machine.

The curves A and B give the torques due to the two rotary components of the

oscillating magnetic field. These torques act in opposite directions and C is their

resultant.

direction. The curve C represents the resulting torque, and is

constructed by subtracting the ordinate of the curve B from that

of A, and making this length the ordinate of C.

The equation to the curve A is

yi
= 100 (10-^(1+ (10 -*)2

},

and the equation to the curve B is

ya
= 100 (10 + #)/{! + (10 + #)

2

}.

The equation to the curve C is

The maximum value of the torque occurs when the slip is about ten

per cent., and the torque vanishes when the slip is the half of one

per cent, and when it is unity, that is, when the rotor is at rest.
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For single phase motors special starting devices are generally

necessary, since the torque is zero when the angular

vke^'fbr
de

velocity of the rotor is zero. Small motors can be

mofors
phase started by hand, a pull at the belt being all that is

required. They may be started in either direction

as they work equally well in the two cases. Motors of large size

generally have a secondary winding on the stator. During the

start a current which is out of phase with the current in the

primary winding is sent through this winding, so that a rotating
field is produced in addition to the alternating field.

There are many methods employed in practice for obtaining
currents which will differ in phase. One method is to employ
static or electrolytic condensers in the starting circuit. Another

method employed by de Kando is to produce an unsymmetrical
field by cutting out during the start some of the windings in the

circuit of one pair of quadrants. Heyland has suggested having
two stator windings in parallel. One of these windings is divided

into two, which are put in series during the process of starting and

then put in parallel for the normal working. By this means we

get during the start two branched circuits with different induct-

ances and resistances, and hence the currents are out of phase and

a rotary component is superposed on the oscillating field.

We have seen that when the resistance r of the rotor circuit is

given by

r = wj (V1 + 2s - s* - 1),

the torque is a maximum. If the angular velocity of the rotor is

very small, s is practically unity, and r is 0'414&)^. Thus, in order

to get the maximum starting torque, r should have this value.

Arno inserts resistance into the rotor circuit by means of slip rings
on the rotor shaft, and adjusts the external resistance so that the

starting torque is a maximum. The resistance is then gradually
diminished as the speed increases. As the torque is zero when

the rotor is at rest, an initial impulse has to be given to the rotor.

It is found possible to start single phase motors of large size by
this method.

Steinmetz employs a second winding with its axis inclined at

60 to the axis of the first winding and with its terminals in
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series with a condenser. This enables the motor to start when

there is no load on it, and it increases the power factor of the

stator circuit.

It will be seen that in all these methods the motor has to start

on a loose pulley.

In the special case when the motor drives a dynamo for

charging accumulators, it can easily be brought up to speed by

driving the dynamo as a motor from the accumulators. When the

speed of the single phase motor coupled to the shunt wound

dynamo is sufficiently high the switch for the alternating current

is closed. The armature of the dynamo is now driven at increased

speed, the current in the battery circuit reverses and the accumu-

lators are charged.

In polyphase induction motors the starting torque is, as a rule,

The starting
small owing to the small power factor of the stator

of induction circuit when the rotor is at rest. From the circle
motors having
a rotating diagram (Fig. 160) we see that the power factor, in

many cases, ought to be about 07, if the starting

torque is to be a maximum. This can be arranged by inserting

resistances in the rotor circuit. To do this the rotor must have a

coil winding and be provided with slip rings and brushes. In

practice it is generally arranged that the starting torque is twice

as great as the full load torque, and hence the starting current is

approximately equal to twice the full load current. The starting

resistances are cut out of the rotor circuit as the speed increases.

Let us consider the case of a three phase induction motor

having a star-connected rotor provided with slip

induction
386

rings for inserting the star resistances. Suppose
motor running that the rotor is running with angular velocity a>2

and that we raise one of the brushes pressing on the

slip rings. There is now only a single circuit for the current in

the rotor windings and the frequency of this current is

p (CO!
- 0>2)/27T.

The flux produced by it will therefore be an oscillating flux. We
may resolve it into two components rotating in opposite directions

with angular velocities + (o^ o>2) relatively to the rotor. But the
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rotor is rotating with an angular velocity &> 2 ,
and thus the actual

angular velocities of the rotor fields in space are o>2 (&>i coz),

that is, &>! and 2ft>2 coi respectively. If the rotor start from rest

with one brush raised, it will run in stable equilibrium as a

synchronous motor (p. 397) when &>2 equals ojj/2. If this brush

be now put in contact with the slip ring, the rotor will speed up
until its angular velocity is nearly a)1 . If we again raise the brush,

it will in general continue to run with the angular velocity o>i, but

if the retarding torque be great it may slow down to half speed.

The device illustrated in Fig. 174 which is due to Fischer-

starting de-
Hinnen is found effective in starting motors. The

vices for
starting resistances X (Fig. 174) are shunted by the

polyphase in- *
\

&
.

J

auction inductive coils R. When the rotor is at rest, the

frequency of the currents in it equals the frequency
of the applied potential difference, and thus the impedance of

Fig. 174. Fischer-Hinnen starting device for three phase induction motors.

a coil R is high compared with the resistance X. When however

the rotor is running nearly at synchronous speed, the frequency of

the rotor currents is very low, and thus the impedance of a coil R
is low compared with the resistance X. The resistance of the
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rotor circuits is thus high during the start and is very small when

full speed is attained, the resistances X being practically short

circuited by the resistances R.

The starting device due to A. P. Zani is similar to the above.

During the start the external non-inductive resistances are shunted

by the inductive coils shown in Fig. 175. Instead, however, of

relying on the diminished impedance at low frequencies, the

Fig. 175. A. P. Zani's starting device when revolving slowly.

reluctance of the magnetic circuits is automatically considerably

increased when the speed attains a given value less than the

lowest working speed. The reactance of the coils is thus made

negligibly small, and the starting resistances are practically short

circuited. This is effected by means of centrifugal force (Fig. 176),

the pole pieces flying apart and so increasing the reluctance very

considerably. High efficiencies have been obtained with this type
of motor.

In several types of starting device, Steinmetz makes use of
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the electrical properties of magnetite. Magnetite and materials

similar to it have a high resistance at ordinary temperatures but

become good conductors at high temperatures. Hence, if magnetite
resistances be inserted in the rotor circuits, they offer a gradually

diminishing resistance to the currents during the start, and thus

they act in a similar manner to starting devices which auto-

matically switch out resistance. Steinmetz also uses magnetite
in the construction of squirrel cage rotors. The rotor conductors

Fig. 176. A. P. Zani's starting device when running at full speed.

are in electrical contact with the short circuiting rings only through

magnetite washers, the fastening bolt being insulated both from

the washer and the ring. The resistance of the rotor circuits is

thus large at the start owing to the resistance of the washers, but

when the washers get hot their resistance is negligible. When
the rotor stops the washers cool rapidly, being in contact with a

metal ring, and so the motor can safely be restarted almost

immediately.
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We have seen that when the rotor of an induction motor is

driven at a speed greater than that corresponding to

geTe

n
ratore

US

synchronism it gives power to the stator. A motor

of this kind, driven by an engine, can therefore be

used to aid the polyphase alternator in supplying power. As the

speed of the rotor has no effect on the frequency of the supply

current, such a machine is called an asynchronous generator.

In the Leblanc system of distribution an ordinary polyphase

alternator is used in conjunction with a number of asynchronous

machines which can all be put in parallel with the bus bars. The

frequency of the alternating currents in the stator circuits is the

same whatever may be the speed of the rotors. It depends merely
on the speed of the polyphase alternator which is always running.

Leblanc compares the role of this machine to that of a chef

d'orchestre as it controls the frequency of the currents in the

stators of all the other machines. Each of the asynchronous
machines works practically at constant power, the regulating

alternator governing the pressure between the bus bars as well as

the frequency. These machines can be put in and taken out of

circuit as readily as ordinary direct current dynamos, and irregu-

larities in the speed of the engines driving them have very little

effect on the supply.
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CHAPTER XIV.

Gliding magnetic fields. Field produced by a wave-winding. Lap-windings.
Formula for the flux in terms of the ampere turns. The induced electro-

motive force in the stator winding. Two phase field. Effect of the rotor

currents on the distribution of the magnetic lines in the air-gap. Influence

of the harmonics of the magnetic field on the working of induction motors.

Stator connected in four-wire star. Current waves not sine shaped.

The effect of raising a rotor brush. References.

IN discussing the theory of the induction motor we have supposed

Gliding mag- *na^ tne distribution of the magnetic flux in the air-

netic fields.
gap fonows the harmonic law. In many practical

cases formulae obtained on this assumption are found to be very

approximately true, and they are helpful to the electrician. In

some cases, however, phenomena arise which are due to the distri-

bution of the magnetic flux not following the harmonic law. It

is therefore necessary to consider the effect of the presence of

harmonics in the magnetic flux on the working of the machine.

When adjacent coils of a phase winding of the stator are

wound in opposite directions, we shall assume that the number of

coils is 2p and that the distance between their centres is a. When,

however, the coils are all wound in the same direction, so that the

winding is hemitropic, we shall assume that p is the number of

coils and that 2a is the distance between the centres of adjacent

coils. We shall also assume that the minimum distance between

consecutive coils which are wound the same way equals the

breadth of the narrowest turn of a coil (see Fig. 40, p. 77). If the

field be sine shaped we can write

A! =H COS wt COS

In this formula Heos&t is the induction density in the air-

gap, due to the current in No. 1 phase winding, at points on a fixed
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line parallel to the axis of the rotor through the centre of the face

of a coil. The intensity of the field due to the current in this

phase, at all points whose distance from the fixed line, measured

along the air-gap, equals #, is given by h^. If r be the inner

radius of the stator, we have 2pa = %7rr, and therefore irja
=

pfr.

Let h be the resultant intensity of the field at a point at

a distance x from the fixed line, and let the motor be three phase.

Then, since at every instant we have h = h1 + h2 + h3 ,
we may

write

h = H cos tot cos (px/r) + H cos (tot 2-7T/3) cos (px/r 2?r/3)

4-H cos (tot
-

4?r/3) cos (px/r
-

4?r/3)

=
(3/2) H cos (tot

-
px/r).

Thus h will always have its maximum value (3/2)H at points

whose abscissae equal (tor/p)t. In general, we see that at all

points on any line which moves round the air-gap with a constant

linear velocity tor/p, that is, 2a/T, the flux density is constant.

Let us now consider the magnetic field produced by a simple

wave-winding having one slot per pole and per phase

by a wave- (see Fig. 38, p. 75). The field due to one phase will be

a curve fff. . . which, with the axis O'X, makes up a

series of rectangles (Fig. 177). By Fourier's theorem this curve

may be represented by

y = (4/7r) h {
sin (irx/a) + (1/3) sin (3^/a) + ...

} (1),

when the origin is at 0'. Changing the origin to 0, the middle

point of the base of one of the rectangles, we get

y = (4/7I-) h {
cos (irx/a)

-
(1/3) cos (3ira?/a) + ...

} (2).

In this equation y is the value of the field due to the current

in No. 1 phase winding at points which have x for abscissa, and

h=Hcostot. We have seen above that the resultant field Ylt

due to the first harmonic terms, is given by

F, = (4/7r) (3/2) H cos (tot -px/r) = (6/77-) H cos (tot
-

ira/a).

Hence the amplitude of this field is (Q/ir) H, and it rotates in the

positive direction with an angular velocity co/p.

R. n. 25
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The field F3 ,
due to the third harmonic terms, at points

distant x from the axis is given by

F3
= -

(4>H/37r) [cos cot cos (3m/a)
+ cos (tot

-
2-7T/3) cos {(37r/a) (as

-
2a/3)}

+ cos (tot
-

4-7T/3) cos j(37r/a) (x
-

4a/3)}]
= 0.

Thus the resultant field due to the third harmonic terms is zero.

In three phase motors, therefore, which have a wave-winding, the

O' o

/

Fig. 177. The magnetic field in the air-gap produced by a simple

wave-winding.

third harmonic term in the resultant flux in the air-gap is always
absent. Similarly this flux will contain no harmonic term the

order of which is 3n.

The field F5 ,
due to the fifth harmonic, at points distant x

from the axis is given by

F5
=

(4-r/5?r) [cos cot cos (57rx/a)

+ cos (at
-

2-7T/3) cos {(OTT/O) (x
-

2a/3)}

+ cos (at
-

4-7T/3) cos {(Sir/a) (x
-

4a/3)}]

= (6#/57r) cos (at +

Hence the maximum value of the field due to the fifth

harmonic is 6H/57T, and it rotates backwards with an angular

velocity co/5p. We also see that the breadth of the bands of flux

of opposite polarity in the magnetic distribution due to the fifth

harmonic is a/5. Similarly we can show that the field due to the

seventh harmonic rotates forwards with angular velocity co/7p and

that its amplitude is 6jH"/7?r.

The following table gives the amplitudes, the angular velocities,

and the polar breadths of the harmonics of the resultant magnetic
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field in the air-gap of a three phase induction motor which has

a stator with a wave-winding :

Order of the harmonic
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The equation to the resultant curve (Fig. 179) got by adding these

two curves together is

y = (8/?r) h {
sin (irb/a) cos (iras/a)

+ (1/3) sin (37r6/a) cos (Svr^/a) + ...}.

The maximum height of this curve is 2h
; reducing it to h, the

equation becomes

y = (4/7r) h {
sin (7r6/a) cos (TTX/O)

+ (1/3) sin (37r6/a) cos (3/a) + . . .
} (3).

The breadth of the rectangular waves (Fig. 179) represented by

(3) is 26, and the minimum distance between them is a 26.

Y

/rrV

76

/ 7 / /
Fig. 179. Rectangular waves.

Let us first suppose that the winding has four slots per coil.

In this case b will equal 5a/12 for the inner winding and 7a/12 for

the outer winding. If A/2 be the value of the flux density in the

air-gap produced by each winding, the resultant flux density is

given by

y = (2/7r) h [{ sin (5w/ 12) + sin (7-7T/12)) cos (irxja)

+ (1/3) {
sin 3 (57T/12) + sin 3 (7w/12)J cos

=
(4/7r) h [sin (5-7T/12) cos (irx/a)

-(l/3)sin(7r/4)cos(37r^/a)+...] ............ (4).

When there are six slots per coil, the values of b for the windings
are 7a/18, 9a/18, and lla/18. In general if there are 2m slots per

coil, the values of 6 for the windings are

{(2m + l)/(6m)} a, {(2m + 3)/(6m)} a, ... {(4m
-

l)/(6m)} a.

+ . . . ]
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In this case the coefficient of cos(7r#/a) in the expansion of y

equals

(4/7r) h (l/m) [sin {(2m + l)/(6m)}7r + sin {(2m + 3)/(6m)} TT + ...],

and this equals (4/7r)/i/{2msin (?r/6m)}.

Calculating the coefficients of the other terms of the expansion
in the same way, we find that the flux density y at any point in

the air-gap, due to the current in a phase-winding, when there are

2?n slots per coil, is given by

y = (4/7r) h [{l/2??i sin (7r/6m)} cos (TTX/O)

-
(l/3m sin (IT/2m)} cos (Sine/a)

+ {l/Wm sin (57r/6w)J cos (5irx/a)

+ {l/14msm(77r/6m)}cos(77n?/a)-...] ......... (5).

When m is large we may write

l/{2msin(7r/6m)} = 3/7r,

since the sine of a small angle is approximately equal to its

circular measure. Similarly

l/{3m sin (?r/2m)}
=

2/3-7T, etc.,

and thus we find that, in this case,

y = (24/7T
2

) h [(1/2) cos (war/a)
-

(1/3
2
) cos (3ira>/a)

+ {l/(2.5
2

))cos(57rtf/a)+...] .................. (6),

approximately.

If we integrate equation (3) we find that

e

Joo

=
(4/7T

2

) ah {
sin (trbja) sin (irxfa)

+ (1/3
2

) sin (3?r6/a) sin (3?r^/a) + ...).

The shape of this curve is shown in Fig. 180. Changing the

origin 0' (Fig. 180) to the point (a/2, 0), we write x + a/2 for x

in this equation, and thus

yi
=

(4/7T
2

) ah {
sin (irbja} cos (irxfa}
-

(1/3
2

) sin (3?r6/a) cos (3?r^/a) +...}.

Finally writing yb for y,, so that the maximum value of y is h,

we get

^ = (4/7T
2

) (a/6) h {
sin (irb/a) cos (TTX/U)

-
(1/3

2

) sin (3ir6/a) cos (3^/a) + ...
]
......... (7).
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The lengths of the two parallel sides of the trapezium (Fig. 180),

bisected by OF, are a and a 26 respectively, and the height of

the trapezium is h.

c oV~ /,' "c7
To77 //'

Fig. 180. Shape of the flux wave in the air-gap of a three phase machine due

to the current in one phase when there is an infinite number of slots.

The curve fff.-> shown in Fig. 180 is a useful one. By giving

various values to b we get trapeziums of all shapes. For instance

when b is zero we get the series of rectangles shown in Fig. 177,

and the equation (7) simplifies to (2). When 6 = a/6, the equa-

tion (7) is the same as (6), and when b = a/2 we get the series of

triangles the equation to which is

y = (8&/7T
2
) {

cos (ins/a) + (1/3
2

) cos (3wa?/a) + ...}.

Since the permeability of iron is very large compared with the

permeability of air, we may, in getting approximate

formulae, suppose that it is infinite. Let us suppose

j.]^ nj% js faQ number of turns in a stator coil when
'

the adjacent coils of one phase are wound in opposite

directions, and that n is the number of turns when they are wound

in the same direction. In either case pn is the number of turns

and 2pn the number of conductors per phase, since we suppose

that the number 2p of coils in the former case is double that in

the latter.

Let the current in No. 1 phase-winding be / cos at, and

let d be the radial depth of the air-gap. Let also 8 be the

mean cross-sectional area of the path of the flux < linked either

with two adjacent coils belonging to one phase or, when the

winding is hemitropic, with one side of a coil. Since, on our

assumption, 2d/S is the mean reluctance of the magnetic circuit

of
(/>,

we have (Vol. I, p. 51)

< =
(4?r/10) nl cos tot . (S/2d).

terms of the

ampere turns
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Hence, if Bl denote the maximum value at any instant of the flux

density due to the current in No. 1 phase, we have

B1
=

7rnl/5d.

If the wave-shape of the flux be rectangular (Fig. 177), and

if the rotor be running at synchronous speed, the

electromotive instantaneous value b^ of the flux density due to the
" 1

current in No. 1 phase, at all points in the air-gap
winding. which have x for their abscissa, is given by

6j = (4/7r) (-rrnl cos cot/5d) {cos (TTX/O) (1/3) cos (3?r^/a) +...}.

If b therefore be the value of the flux density at the given points,

due to the currents in the three phases, we get

b = (1'ZnI/d) (cos (cot irxja) + (1/5) cos (cot + ojrx/a)

(1/7) cos (cot 77r#/a) ...}.

Hence we see that the flux can be resolved into a series of waves

gliding with velocities coa/Tr, wa/DTr, a)a/7?r, ....

The value el of the back electromotive force developed in a

conductor at the point where x equals a/2, by the bands of flux

gliding with velocity coa/Tr, is given (p. 15) by

el
= (I'Znl/d) sin cot . I . (coa/7r) . 10~8

volts,

where I is the length of the conductor. Similarly we have

e5
=

(l'2nl/5d) sin cot. I. (coa/fa) . 10~8
volts,

where e5 is the back electromotive force developed in the con-

ductor by the bands of flux of breadth a/5, which glide backwards

round the air-gap with velocity eoa/OTr. If e denote the total back

electromotive force developed in this conductor, we have

e = (l'2nllaco/7rd) (1 4- 1/5
2 + l/7

2+ l/ll
2 + 1/13

2+ . .. ) sin cot . 10~8
.

oo

Now ?T
2

/8 = 2l/(2??i I)
2

,
and thus dividing each side of this

i

equation by 32 and subtracting the result from the original

equation, we see that 7r
2

/9 is the sum of the series within the

brackets. Hence,

e = (1-27T/90
7

) nllaco sin cot . 10~8

= 0-419 (nl/d) laco sin cot . 10~8
.

Since there are 2pn conductors per phase, the effective value
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V of the back electromotive force developed per phase winding is

given by
F= V2 . 0-419 n*Id laco . 10~8

where/ is the frequency.

Let us now suppose that there are 2m slots per coil. If B1

denote the flux density at points inside the narrowest turn of

a coil, we have, as before,

Bl
=

7rnl/5d.

Thus the equation to the flux, which will be shaped like the

stepped curve shown in Fig. 178, is, by (5),

6j
=

(4/?r) (TrnI cos cot/Sd) [{l/2m sin (7r/6m)} cos (TTX/O)
-
jl/3m sin (7r/2ra)} cos (fax/a) + ...].

Hence we find that

b = (Q'6nl/dm) [{I/sin (ir/Qm)} cos (cot
-

TTX/O)

+ {1/5 sin (5-7r/6m)) cos (at + fax/a)

+ {1/7 sin (77r/6m)) cos (cot
-

lirxja} + ...].

The amplitude, therefore, of the field gliding round the air-gap,

with velocity coa/ir is hnl/d, where k equals 0*6/wsin(7r/6w).

The following table shows how ^ varies for different values

of m :

m
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amplitudes of the seventh and higher harmonic fields are small

compared with &a . The higher harmonic fields, also, glide much
more slowly than the fundamental field. The electromotive forces,

therefore, which they develope in the various wires will be much
smal ler, and so in approximate work they can be neglected. Hence

b is given approximately by the equation

b = {0'6/ra sin (TT/GW)} (nl/d) cos (cot irxja).

The abscissae of the axes of the slots in which are embedded

the conductors of the coil which has the origin at the centre of its

polar face are

{(2m + l)/6m} a, { (2m + 3)/6m) a, . . .

{ (4>m
-

l)/6m} a,

and the number of conductors in a slot is n/m. Hence since the

band of flux is gliding with a velocity coajir, the instantaneous

value e of the back electromotive force developed in No. 1 phase

winding is given by

e = p (n/m) { 0'6/m sin (7r/6m)J (nl/d) [cos {cot
- (2m + 1) ir/Gm}

- cos
{
cot + (2m + 1) 7r/6mJ + ...] (coa/ir) . 10~8

= I-2p(n?/m
2

)(lcoa/7r){l/dsm (7r/6m)}/sino>[sin{(2ra+ l)*rr/6m}

+ . . . + sin {(4m
-

1) ir/Qm}] . 10~8

=
2'4>plaf(n*/m~) {l/d sin (IT/6m)} I sin cot

[sin (7T/2) sin (w/6)/sin (w/6m)] . 10~8
.

Hence the effective value V of the back E.M.F. per phase is

given by
V=j3.(pn*I/d)laf. 10~8

,

where = 0*6 V2/{m
2 sin2

(jr/Qm)}

=
0'849/(m

2 sin2

(7r/6m)}.

When m is unity, /3 equals 3'39. We have shown on p. 392 that

its true value in this case is 372. Hence the error introduced in

this case by neglecting the higher harmonics is less than ten per
cent. When there are four slots per coil, /3 is approximately 3*17,

and when m is large ft is approximately 3'10.

If A be the magnetising current per phase at synchronous

speed, we have / = -4*^2, and thus A Q is given by the formula

A =
(d/1'2) {m

2 sin2

(7r/6m)} VlW/(pnHaf),
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and since RA Q is generally negligible compared with F, we may
assume in this formula that V is the applied P.D. Hence, on our

assumptions, we see that the magnetising current per phase at

synchronous speed varies directly as the radial depth of the air-

gap and the applied P.D., and inversely as the frequency, the mean

cross-sectional area of the coils, the number of coils and the square

of the number of turns per coil.

We shall now consider the magnetic field in the air-gap of

TWO phase a two phase induction motor which has two separate
field -

windings. Let us suppose that the winding of one

phase is similar to that shown in Fig. 57, p. 98, but let us suppose

that there are 2m slots per coil. We shall also suppose that

there are n turns per coil. There will be m steps in the flux

curve (Fig. 178), due to the current in one phase. If the distance

between the centres of consecutive coils of one phase be 2a, and if

&! and b2 be the values of the flux densities at the points whose

abscissae are x, due to the currents in the two phases, we

have, by (5),

b,
=

(4/7r) (-Trft/cos cot/5d) [{
I/2m sin (-rr/Qm)} cos (irx/a)

-
{
I/3m sin (7r/2m)} cos (^irxja) + ...]

and

&2
=

(4/7r) {irnIcos((ot-7r/2)/5d}[{l/2m8m(7r/6m)} cos(-7rx/a-7r/2)
-

{ l/3ra sin (IT/2m)} cos (3?ne/a
-

3?r/2) +...].

Thus, if b is the value of the resultant flux at points the abscissae

of which equal x, we get

=
(4/7r) (irnl/Sd) [{ l/2m sin (7r/6m)) cos (cot

-
TTX/O)

{ l/3ra sin (7r/2m)} cos (cot + Sirx/a)

+ { l/10ra sin (o7r/6m)} cos (cot Sirx/a) +...].

We may therefore suppose that the flux is the resultant of a

series of waves. If the order of the wave be 4r 1, it glides

backwards with angular velocity o>/(4r 1), and the breadth of

the band of flux is a/(4r 1). If the order of the wave be 4r + 1,

it glides forwards with angular velocity o>/(4r +1), and its breadth

is a/(4r + 1).
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It is to be noticed that this case is unlike the corresponding

problem for three phase fields, for here none of the harmonics

cancel out. In three phase fields we only have harmonics of the

order 6r + 1. In two phase fields we may have all the harmonics

of the order 2?* + l, and, in general, the third harmonic cannot

be neglected. The calculation of the back E.M.F. in the stator

windings when the rotor is running at synchronous speed can be

made in the same way as for three phase motors.

In this chapter we have assumed that the currents in the

stator windings follow the harmonic law, and that

rotor currents there are no rotor currents. We have also assumed

budon of
S

the *nat *ne hysteresis and eddy current losses are

in^Tah-
H
a

CS
negligible. Our results are approximately correct

when the rotor is running at synchronous speed, or

when the brushes are lifted from the slip rings so that the rotor

windings are on open circuit. We shall now consider how the

rotor currents modify our results.

Let $ be the total flux linked with a stator winding at a

particular instant, and let e be the applied potential difference,

then, when the resistance of the stator windings can be neglected,
we have

e = d<l>/dt (1).

Now when the slip is appreciable we may regard < as the

resultant of two component fluxes fa and fa, where fa is the

flux due to the currents in the stator windings and fa is the flux

due to the rotor currents. Equation (1) shows us that we always
have

fa + fa = fa,

where fa is the flux due to the currents in the stator windings at

synchronous speed. Hence the resultant field in the air-gap of an

induction motor, when the resistance of the primary windings is

negligible, will have the same shape and the same magnitude
at all loads. We can therefore apply the theorems concerning
the harmonics of the field and the back E.M.F. induced in the

rotor-windings, which we have proved above, to machines under

load.
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When the stator has a simple rectangular winding and there

influence of
*s no overlapping, the shape of the resultant field

ofthemTnetic
^n ^e air-gap is roughly similar to the rectaDgles

field on the shown in Fig. 177. If the resistance of the stator

induction windings be negligible, this will also be the shape at

all loads. If the stator be supplied with sine shaped

currents, there is no third harmonic, and the amplitude of the

fifth is only equal to the fifth part of that of the first, and it

rotates backwards with an angular velocity wJSp. Now, when the

motor is loaded, the slip is only two or three per cent., and so the

angular velocity of the rotor is only slightly less than (o^p. Hence

the slip of the rotor relative to the fifth harmonic of the flux will

be nearly equal to (cOi/op + a)l /p)/((o l /5p), that is, 6. We see from

Fig. 160, p. 347, that the backward torque produced at this slip

will be very small, and, since the amplitude of the fifth harmonic is

only one-fifth that of the first harmonic, its effect on the working
of the machine will be negligible. The slip of the rotor relative

to the seventh harmonic which rotates in the forward direction is

(&>i/7p a>i Ip)l(a>i ftp), that is, 6. As its amplitude is only one-

seventh that of the first, the effect produced will be less than that

produced by the fifth harmonic. The effects of the llth, 13th,

17th... harmonics will be still more minute. In this case, there-

fore, when finding approximate formulae, the sine-curve assump-
tion is permissible.

When the stator windings of an induction motor are connected

in star and the neutral point is insulated, there can
Stator con-

. ...
nected in four- be no third harmonics in the current waves, for the

sum of the instantaneous values of the three currents

to the neutral point must always be zero. When, however, the

neutral point is connected to the fourth wire of a four-wire three-

phase system, the third harmonics in the current waves will be

large, owing to hysteresis (see p. 252). These harmonics will tend

to magnetise the stator ring in such a way that the inner surface

at any instant will have one polarity and the outer surface the

other polarity, and there will be a considerable leakage of flux in

the air between the inner and the outer surfaces of the stator or

even from the outer surface of the stator to the rotor. We should
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expect, therefore, that, as in the case of a star connected three-

phase transformer, connected in four-wire star, the magnetising
current would be large and would contain a large third harmonic

(see p. 271).

When the current waves in the stator windings are not sine

shaped, the amplitudes of the third and higher
Current waves A

not sine harmonic magnetic fields in the air-gap may be

large. In this case, therefore, when the rotor is

speeding up, we should expect that it would sometimes run in

stable equilibrium at speeds which are submultiples of its syn-
chronous speed. This sometimes happens in practice.

When the rotor has a three phase winding and slip rings for

inserting
1 resistance into the rotor windings, we can

The effect of
.

raising a rotor make it run at half-speed by preventing one of the

rotor brushes making contact before and after the

start. This phenomenon, however, is not due to the presence of

harmonics in the magnetic field of the air-gap, and can be ex-

plained simply by the properties of rotating and oscillating

magnetic fields. At half-speed the frequency of the alternating

currents induced in the closed phase winding of the rotor is only

half that of the stator currents. The oscillating magnetic field

due to it can be resolved into two rotary fields, one of which will

have an angular velocity in space equal to the angular velocity of

the stator field, and the other will be fixed in direction (p. 380).

At this speed (o> 1/2) the frequency of the rotor currents is

(|)&j 1/2)/(27r). Hence the rotor is rotating synchronously with

the pulsations of the current in its windings and acts as a

synchronous motor.
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CHAPTEE XV.

Commutator motors. Alternating current series motor. Theory of the

series motor. Formulae for the alternating current series motor. Circle

diagram. Equations for the direct current series motor. The formula

for the torque. Alternating current shunt motor. Repulsion motor.

Induction Commutator Motor. Other forms of motor. References.

IN an ordinary direct current self-exciting motor, if we reverse

the connections of its terminals with the mains, the

moToTs
Utat r

direction of the magnetomotive force in the field

coils and the direction of the current in the armature

windings are both reversed. If, therefore, the new magnetic
force acting on the field magnets be greater than the coercive

force, the field flux will be reversed, and hence the torque will

still be in the same direction. It is well known, in practice, that

in order to make the motor run in the opposite direction, it is

necessary to reverse the direction of the current either in the

field magnet windings or in the armature, but not in both. Revers-

ing both, by altering the polarity of the motor terminals, has no

practical effect either on the direction of rotation or on the

efficiency of the machine. It follows, therefore, that at very low

frequencies, every direct current self-exciting motor when supplied

with alternating currents will tend to act as a motor, as the

torque always acts in the same sense in whichever direction the

current is flowing. With high frequencies it is easy to see that

the effects of eddy currents in screening the magnetising force due

to the currents in the field windings from the interior of the

field magnets may considerably modify the action of the motor.

With ordinary direct current field magnets the loss due to eddy
currents would be excessive, and so it is essential that the field
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magnets be built up of thin iron plates. When this is done, both

series and shunt motors will work when supplied from alternating

current mains, and if the necessary modifications in their design

be made and suitable devices employed to prevent excessive

sparking, etc., their efficiency will be high. Both of these are

types of
' commutator motors

'

and we shall now give an elementary

theory of their action.

The motor shown in Fig. 181 is similar to an ordinary direct

current series motor with a ring
1 armature. The

Alternating _

current series field magnets are laminated and MI and M2 are
motor.

i i

connected through a suitable starting resistance

with constant potential supply mains. In order to simplify the

theory we shall assume for the present that the permeability of

Fig. 181. Alternating current series motor.

the iron is constant
;
the field flux will then be in phase with the

supply current. The flux will therefore vanish twice during the

period of the alternating current, and the torque, also, will vanish

twice. In direct current motors the armature reaction produces a

transverse magnetisation of the field. A similar distortion of the

field will be produced by alternating currents. One way of neutral-

ising the transverse field is to use, as in direct current machines,

a special series winding, the plane of which is at right angles to

the axis of commutation. If the machine have no compensating
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windings, the sparking at the brushes will be violent, as the coils

short circuited by the brushes will have large currents induced in

them. This effect can be reduced by means of carbon brushes.

This, however, lowers the efficiency of the machine, as at full load

the brushes heat excessively and absorb an appreciable amount

of power.

Let us now consider the two pole machine shown in Fig. 182.

Let us suppose that the brushes B^B^ are rubbing on

Ie
h
r!es^o

f

tor.

e
a commutator and that the line joining them passes

through the axis of the armature and makes an

angle a with OY which is perpendicular to the line OX joining
the centres of the polar faces. We shall assume that the radial

Fig. 182. Armature of alternating current series motor.

distribution of the flux round the ring armature follows the cosine

law, having its maximum density at the points opposite the

middle points of the polar faces and being zero at points on the

vertical line through 0. Owing to the high permeability of iron

we need only consider the radial component of the flux. Let 6 be

the angle which the plane of one of the armature windings makes

with OX. Then, if <j be the flux embraced by this winding, and

< sin fit be the total flux entering the armature, we have
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since at any instant the flux through any winding varies as

JJ cos 0dO, that is, as sin 6, and we suppose that the flux divides

equally along each half of the armature. It is to be noticed that

fl/^Tr is the frequency of the supply current.

We shall suppose that the angular velocity co of the armature

is constant. If el denote the electromotive force developed in the

winding, we have

= -
(<E>/2) (II cos fit. sin + sin fit . cos 0},

since dB/dt = a).

If we suppose that the windings JV2 are uniformly distributed

over the ring armature, the number of them included within the

angle dd will be (N2/27r) d0, and thus, if we suppose in addition

that the number of commutator segments is infinite, the total

back electromotive force developed between the brushes B1 and 52 ,

is given by
fir/2 + a

J -n/'2+a

= (Nj&/Z7r) (11 sin a . cos fit + a> cos a . sin fit}.

Putting tan B = (fl/a>) tan a,

we get

e = (ft)Q (N&IZ-TT) sin (fit + S)}/(O
2 cos2 S + to

2 sin2

8)* . . .(3).

This formula shows us that the angle of time lag between e

and the flux, and therefore, since we are assuming that the

permeability is constant, between e and the current, is 8. Also

since the frequency of e is H/2?r, it equals the frequency of the

supply current.

It is easy to see from first principles that the frequency of the

back electromotive force e will, on our assumptions, be equal to

the frequency of the flux or of the applied alternating potential

difference. We have assumed that the angular velocity of the

commutator is constant, that the armature is perfectly symme-
trical, and that the number of segments of the commutator is

infinite. It follows that at the times t,t + T, t+2T,... the back

electromotive force between the brushes must be the same, for

the fluxes and the currents are identical at these instants. The

R. n. 26
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frequency, therefore, of the back electromotive force is the same

as that of the applied potential difference. In practice, the

number of commutator segments is finite, and there are generally
slots on the armature, so that the reluctance of the magnetic
circuit varies periodically with the angular velocity of the rotor.

For both these reasons, harmonics, the periods of which depend
on a), will be introduced into the expression for e and this is

found to be the case in actual working. In making a first rough

calculation, however, we can neglect these higher harmonics as

their amplitudes are rarely large. In addition, a harmonic, the

period of which equals the period of rotation of the rotor, is some-

times introduced owing to the axis of the rotor being slightly out

of truth.

In the particular case when a is zero, formula (3) becomes

e = (&>Ay2?r) <E> sin Q

The back electromotive force, therefore, is simply proportional to

the product of the angular velocity and the flux. It is also in

exact opposition in phase to the current. This formula may be

used for machines furnished with compensating windings.

In the general case, when a is not zero, the phase difference

between e and the current i is S, where tan S = (l/o>) tan a. In

Fig. 182 we have made a positive, the brushes being displaced in

the direction of rotation. In this position the magnetomotive
force of the armature currents tends to strengthen the field.

Similarly, when a is negative, that is, when the brushes are

moved backwards, the armature reaction tends to demagnetise
the field, and the phase difference between e and i is less than TT.

If we denote the current i by I sin lt
t
the formula (3) for e

may be written in the form

e = (N2<$/27rI) (&> cos a . i + sin a . di/dt),

and therefore e = Mw cos a.i+ Msma. di/dt ............... (4),

where M=

When the rotor is at rest, that is, when &> is zero, the only

E.M.F. induced in each half of the rotor winding is due to the

effects of the mutual induction between the field magnet wind-

ings and the armature coils. Since we have supposed that the
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permeability of the iron is constant, and we are neglecting

hysteresis and eddy currents, there will be a constant mutual

inductance coefficient between the field magnet coils and either

half of the armature windings between the brushes. Putting

co equal to zero in equation (4) we see that the mutual inductance

is J/sina. It vanishes with a, and is positive or negative

according as a is positive or negative, that is, according as the

brushes are moved forwards or backwards from their normal

position.

By means of formula (4) we can easily find formulae for the

working of the alternating current series motor.

We shall assume that the applied potential diffe-

cs

11

motor. rence wave can be represented by E sin (fit + ft) and

that the resistance of the electric circuit between the

main terminals of the machine is R, so that R includes the

resistance of the field coils, the resistances of the halves of the

rotor winding in parallel and the resistance introduced by the

brushes and connecting leads. Let Zx and L2 be the self induct-

ances of the field magnet coils and of the halves of the rotor

circuit which are in parallel between the brushes. The equation

to find the current i is

jE'sin (fit + 13)
= Ri + A

-^
+M sin

a-^
+ Lz

~ + e,

and therefore by (4)

E sin (fit + @) = (R + Mco cos a) i + (A + L2 + 2M sin a) -^

cfo'

where p = R + Mco cos a, and X = Lj_ + Lz + 23f sin a.

Solving this equation we find that

i={Esm(flt + {3-y)}l(p* + Kflrf ............ (5),

where tan7 = XO//3,
or cos 7 = p/(p

2 + X2fl2

)^.

If V and A denote the effective values of E sin (fit + ft) and i,

we have

V= A (p* + X2fl2

)i

and W = VA cos 7 = A 2

p = A*R + A*Mco cos a,

where W is the total power given to the motor.

262
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On our assumptions, the total power given to the motor is

expended in heating the conductors (A*R) and in turning round

the rotor. If G denote the average value of the torque produced

by the electrical forces acting on the rotor, Gw will be the measure

of the average power given to it. Thus we have

A*R + A*Mco cos a = A*R + Gco,

and hence G =M cos a . A 2
........................ (6).

The torque is therefore proportional to the square of the current

and to the cosine of the angle a. Since the cosine of a small

angle differs little from unity, we see that moving the brushes

through a small angle on either side of the central position does

not appreciably alter the value of the torque for a given current.

This torque, however, is a maximum when a is zero, that is, in the

central position.

The power factor cos 7 of the motor circuit is given by

It continually increases, therefore, as the angular velocity w of the

armature increases. For a given value of CD, however, any increase

in the frequency of the supply current will diminish the power
factor.

The efficiency rj of the motor is given by the formula,

= Me* cos a/(R + Mi* cos a) ............... (8).

Hence the efficiency, also, increases as the angular velocity

increases.

The power taken from the mains is VA cos 7 and this may be

written in the form

F 2

(R + Ma> cos a)/{(R + Mco cos a)
2 + (A + L2 + 2M sin a)

2 II2

}.

If V remain constant and ay vary, this expression has its

maximum value when

R + May cos a = (L 1 + L2 + 2M sin a) H.

The maximum value of the power taken from the mains, is,

therefore,
F 2

/{2 (A + L2 + 2Jfsin a
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and the power factor in this case is l/\/2, that is, 0*71 nearly.

The efficiency ij, also, at this load is given by

TJ
= 1 - R/KL, + L.2 + 27lfsin a) O).

The following equations give expressions for the useful power
Go) given to the rotor. We have

Gco = Mo> cos a . J. 2

= V*Mo> cos a/{(R + Ma) cos a)
2 + (L, + L, + 2.sin a)

2 H2

}.

Thus, if V remain constant and &> vary, the useful power has its

maximum value when

Jf2
(

2 cos2 a ......... (9),

that is, when the impedance between the terminals of the machine

with the rotor at rest equals the apparent increase in the resistance

of the circuit due to the action of mutual induction. The maximum
value of the useful power equals F2

/2 (R +M&> cos a), where Mco cos a

is found from (9). The power factor cos 7, in this case, is given by

cos 7 = {(R + MOD cos a)/(2Ma) cos a)}*,

where Mw cos a is determined by (9).

In the particular case when R is zero, the efficiency is 100 per
cent, at all loads. The power, in this case, has its maximum
value V'2/2Ma> cos a, when a> is given by

a> = (L! + L.2 + 2M sin a) fl/M cos a,

and the power factor is 1/V2. In general, when R is not zero, the

useful power attains its maximum value at a higher speed than

that at which the power taken from the mains is a maximum.

The efficiency is, therefore, higher in the former case, and the

power factor is greater than 1/V2.

Since the current continually increases as the speed diminishes,

the torque, which is proportional to the square of the current,

continually increases also, attaining its maximum value when the

rotor is at rest. There is little fear, therefore, of the machine

being pulled up by a temporary increase on the load, and, owing
to the inductance of the circuit, there is much less risk of it being

damaged by a temporary overload than in the case of the direct

current machine.
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An instructive method of studying the working of the series

Circle motor is by means of the circle diagram shown in

diagram. 183. Using our previous notation, we have

Hence, if Ox represent F, Op represent pA and xp represent

Opx will be a right-angled triangle and the locus of p will be the

Fig. 183. Diagram of the theoretical series motor. Ox=V=ihe applied P.D.

Op represents (R +Mw cos a) A. As the speed of the armature increases p moves up
the semicircle Opx from its initial position p . If the angle xOs = ihe angle xp'O,

Os is proportional to the angular velocity.

circle described on Ox as diameter. Make Op' = Ma cos a . A, then

pp
f R . A, for p = R -f Mco cos a. The tangent of the angle xp'p

is \^lfR, the angle is therefore constant, and thus the angle xp'O
is constant and the locus of p' is also a circle. The angle xOp is

the phase difference between the applied P.D. and the current.

When the rotor is at rest, p is at p , Op is a tangent to the circle

Op'x, and the power factor is E/(R
2 + X2fl2

)i As the angular

velocity increases, p moves along the circle, and when the angular

velocity is very great, p will be close to x.
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Now, it is easy to find lines on this diagram the lengths of

which are proportional to the magnitudes of the variable quantities

we have to consider. Draw pn and p'ri perpendicular to Ox, and

make the angle xOs equal to the angle xp'O. Produce xp' to

meet Os in s, and draw pk at right angles to Op to meet Ox

in k. Then, it is easy to prove the following relations.

The power factor = Op (I/ V). The current = xp (1/Xfl).

The torque = xn (VMcos a/VH
2

).
The input =pn(V/\fl).

The output =p'n(Vj\l). The efficiency
= Ok(l/V).

The angular velocity
= Os {(R

2
-f WClrf/MFcos a).

The variables are therefore proportional to the lengths of the lines

given outside the brackets on the right hand side of these equations.

We see at once from the diagram that the torque continually

diminishes as the angular velocity increases. We also see that

the input is a maximum when n coincides with the centre of the

circle. In this case the power factor is obviously 1/V2. The

output which is proportional to p'ri is a maximum when ri is at

the centre of the circle, and the power factor and the angular

velocity are both greater than in the preceding case. The

efficiency Ok also continually increases as the angular velocity

increases.

In order to get the corresponding approximate equations for

the direct current series motor, we only need to put
f' ^ equal to zero in the above formulae. Since

^ = 47rAr1//10(R where (R is the reluctance and /
the current in amperes, we find that M equals

Hence, if E be the applied P.D. we have

MIco cos a

/ft> cos a.

Therefore to = (5GI/N& cos a) {(E
-

/)//).

Again, since G =M cos a . A 2

we have G = (N& cos a/5(B) /
2

.

Provided that NJ is large so that the iron is saturated, (ft may be

considered constant, and these equations are a rough guide in

mot
r

or
nt sedes
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practical work. It must be noticed that no account has been

taken of armature reaction which can only be wholly neglected

in a few cases. The value of <I>, and therefore also of M, depends

on the angle a. When a forward lead is given to the brushes,

the armature reaction magnetises the field, and when the brushes

are moved backwards, that is, in the opposite direction to the rota-

tion, from the normal position, the field is partially demagnetised.

Hence, as we move the brushes forward, <1> and M increase, and

as we move them backwards <E> and M diminish. The assumption

that these quantities are constant is therefore sometimes inad-

missible. If the motors, however, whether for direct or alternating

current work, have suitable compensating windings, the armature

reaction is negligible and the above formulae are approximately

correct.

In finding the formula for the torque of an alternating current

motor, we made the assumption that the field flux
1 ne lormula A

for the torque. was in phase with the current. Let us now consider

the problem a little more closely. In actual machines the field

flux does not vanish when the current vanishes, owing to the

remanent magnetism, and the current attains an appreciable value

before the polarity is reversed. Hence the current and the flux

are not in phase with one another. We must therefore consider

what effect this has on the torque. There are also appreciable

backward torques due to eddy currents, friction of the bearings

and brushes, and air friction. It is permissible however to neglect

these when obtaining approximate formulae.

If we assume that the current and the flux follow the harmonic

law, we may write / sin fit for the current, and express the flux
</>

by the equation (p. 244)

= - 4>r cos H + <& sin lt.

Hence, proceeding as on p. 401, we find that the back electromotive

force developed between the brushes is given by

Tr) Iw cos a (- <&r cos fit + <I> sin fit)

+ sin a -j- (- <J>r cos fit + <I> sin
Q|)|

.
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Now, if we suppose that the power ei given to the rotor is wholly

expended in producing the useful torque gco, we have

gw = ei.

But ft) is practically constant, and thus, taking mean values over

a whole period, we obtain

(rft) = (>Y2<//47r) to cos a + (N.>rl/4<7r) O sin a,

and therefore

G = (N^l^-jrl) (I/ft)) cos (a
-

ft) (ft)

24>2
max .

+ (H
2 -

ft)
2

)
<

r
2

}"
2
,

where <E>max .

=
(<

2
4- 3>r

a

)
1/3 and tan /3

=
H<lv/(ft>cl>).

If a be zero, the torque equals (N^/^irl) (^>
2
max . 3V)1/2

,
and

thus the greater the value of the remanent flux <3>r ,
for given

values of ^max. and A, the smaller will be the torque. On the

other hand, if a. be positive, that is, if the brushes be displaced in

the direction of the rotation, the remanence increases the torque

at the speed ft) provided that tan /3 be less than

2tana/(&)
2

/n
2 -tan 2

a).

In Fig. 184 are shown the connections of a simple shunt

wound motor. In practice, J/j and Mz are connected
Alternating . .

current shunt with constant potential supply mains, and so, if we

neglect the armature reaction, the magnetic field is

practically constant at all loads. As the shunt circuit acts like a

choking coil, the current in it will lag by nearly a quarter of

a period behind the applied P.u. Since the armature circuit

is in parallel with the windings of the field magnets, the current

in it at the start will be approximately in phase with the field

flux, provided that the armature acts like a choking coil. The
initial torque, therefore, in this case will be high. If, on the

other hand, the current in it be approximately in phase with the

applied P.D. the initial torque will be very small.

Hence if the power factor of the machine be high, the torque
will be small and vice versa. We can also see from Fig. 184 that

there will be excessive sparking at the brushes, as the coils short

circuited by them are in a rapidly varying magnetic field. For

commercial working, therefore, we must modify the machine so as

to raise its power factor. We must also devise means to prevent

sparking at the brushes.
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One method of raising the power factor of a shunt motor is to

put a condenser of suitable capacity in series with the shunt

windings so that resonance ensues and the current in the field

windings is approximately in phase with the applied P.D. The

difficulty of this method, which was used by Stanley and Kelly,

is that small changes in the frequency upset the relation between

the capacity K and the self inductance L which is required for

Fig. 184. Alternating current shunt motor.

resonance, namely, co
2LK=l. Small changes in the shape of the

wave of the applied P.D. also produce considerable effects in

the working of this type of motor.

An ordinary shunt motor will work satisfactorily when the

current for the armature is supplied from a pair of the mains

of a two phase system of supply and the current for the shunt

from another pair, the mains being chosen so that the applied

potential differences differ in phase by ninety degrees.

The principle of the repulsion motor is illustrated in Fig. 185.

Re uision
^ne P^ es f the stator are made of iron stampings and

motor. are excited by an alternating current got from the

supply mains. The rotor is practically an ordinary direct current

armature with a ring winding, and a commutator on which slide

two short circuiting brushes B-^ and B3 . Let us suppose that the
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planes of the short circuited coils make angles of 45 with

the direction of the magnetic field. In this position the induced

currents will produce forces which tend to move the coil from a

stronger to a weaker region of the magnetic field. The torque

produced will thus be in the direction of the arrowhead. An

objection is sometimes urged against this type of motor on the

ground that only part of the armature windings is utilised. Since,

however, the coils are only traversed by intermittent currents, the

average heating is much less than if they were always in the

circuit. The permissible intensity of the current in the con-

Fig. 185. Repulsion motor. B
l
and B2 are short circuiting pieces pressing on

the commutator. If B
l
and J52 be joined by a wire, the machine will act as an

induction commutator motor and will rotate in the opposite direction.

ductors is therefore higher. The mere fact that all the conductors

are not carrying current at the same time is thus, from the point
of view of the manufacturer, not a serious matter.

If we place a copper ring in an oscillatory magnetic field

due to an alternating current in a coil of wire, and if some of

the lines of force are linked with the ring, the phase difference

between the current induced in it and the magnetic field will,

in general, be nearly 180. The induced currents will be

practically in opposition in phase to the inducing currents, just as

the primary and secondary currents in a transformer are, when
the secondary is on short circuit. By imagining the coils replaced

by their equivalent magnetic shells, we see that there will be repul-
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sion between them, the opposing faces being practically always of

the same polarity. It is also easy to see that there is, in general,

a couple tending to turn the ring so that its plane is parallel

to the direction of the field. When it is in this position, there

will be no induced currents, and therefore, no electromagnetic

forces acting on it. If we displace it slightly so that it embraces

part of the oscillatory field, the induced currents always produce
a torque tending to make the flux embraced by the ring a

minimum.

Let us suppose that we have a circular loop of wire placed
so that its plane makes an angle 6 with the lines of force in an

oscillatory magnetic field. If H cos lt represent the strength

of the field, R and L the resistance and the inductance of the

loop of wire and S its area, and if it be prevented from turning,

we have

ctt

where i is the current in the wire. Thus, solving the equation,

we get

i = - HStt sin 6 sin (tit
-

<x)l(R
2 + L*lrf,

where tan a = Ll/R.

Replacing the loop of wire by its equivalent magnetic shell,

we see that the mean value G of the torque on the loop is

proportional to the mean value of H cos cot . i . cos 0, and thus

G = kHSQ. sin cos Q sin a/(R
z + Zafl 8

)*,

where k is a constant. This may be written in the form

G = (k/Z) HSL& sin 20/(JR2 + Z2H2

).

The torque is therefore a maximum when 6 is 45.

When the amplitude of the alternating magnetic field is not

the same at all points, we have, in addition to the torque on the

coil, acting so as to make the flux embraced by it a minimum,
forces acting which tend to move the coil from places where the

field is strong to places where it is weak.

This can easily be seen by imagining the coil replaced by its

equivalent magnetic shell. The electromagnetic repulsion will

obviously be greater on the side on which the field is stronger.
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Let us now consider the effect produced by joining the brushes

B, and Bo in Fig. 185 by a conductor. It will be
Induction f
commutator seen that electromotive forces will be generated in

each half of the ring and the resultant voltage

between the brushes will only be zero when the rotor is at rest

and the line joining the brushes is at right angles to the line

joining the middle points of the polar faces. In general, therefore,

there will be a current in each half of the ring and in the con-

ductor. The induced polarities in each half of the ring will be

pointing in the same direction and will be opposite to the polarity

of the inducing magnet. Hence there will be attraction, and the

ring will rotate in the opposite direction to that indicated by the

arrow in the figure. The induced currents in the coils short

circuited by the brushes will, as in the last form of motor, produce
a torque opposing the motion, and this will lower the efficiency of

the machine. Special precautions, therefore, have to be taken to

prevent the currents in the coils short circuited by the brushes

from attaining large values. For this reason, in some cases the

windings are connected with the commutator by means of strips

of high resistance metal, or the brushes are laminated in such a

way that they offer a great resistance to the transverse flow of

current across them.

Making the usual assumptions, it is easy to obtain approximate

equations for the working of this type of motor. The E.M.F.

developed in the rotor by induction and rotation, as in the case

of the series motor, may be written in the form

di
Mtocosa.ii + Msma ,

where the symbols have their usual meaning (p. 402). The equa-
tion for the current in the rotor or secondary circuit is therefore

of the form

= Ma) cos a . ii + M sin a -,-
1 + R2i.2 -f lz

-~
(a),

where R.2 is the resistance of the conductor connecting the

brushes, in series with the windings of each half of the armature

in parallel, and lz is the self-inductance of this circuit. The

equation for the current in the magnetising circuit is

(6),
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where e denotes the applied P.D. Equations (a) and (b) may be

taken as the required approximate equations.

Multiplying (a) by i.2 and (b) by ilt adding the equations

together and taking mean values, we get

VA l cos 7 = RiAi* + R.2A 2
2 + Me* cos a . A lA 2 cos a1>2 ,

where 1>2 is the phase difference between A^ and A. If we

neglect hysteresis and eddy current losses, the power VA 1 cos<y

given to the motor will be expended in heating R^-f + R^A^, and

in giving mechanical power Gco to the rotor. We have, therefore,

GM = Ma) cos a . A^A* cos a1>2 ,

and thus G =M cos a . ^L^ cos o^ 2 .

If we make the assumption that e obeys the harmonic law,

complete solutions of the linear equations (a) and (b) can easily be

obtained. To a first approximation they represent the working
of the motor for a given position of the brushes. Owing to

armature reaction, however, if we vary a, we also vary M, and this

effect is very noticeable in practice. It may be reduced by means

of special windings which neutralise, to a considerable extent, the

field produced by the armature currents. Slits, parallel to the

axis of the rotor, are sometimes made in the poles so as to increase

the transverse reluctance, and thus diminish the intensity of the

transverse field produced by armature reaction. In most motors

of this class the power factor is low at all loads, and for a given

output they are much heavier than induction motors. The start-

ing torque, however, is large.

The Arnold motor is partly a repulsion motor and partly an

induction motor. It starts as a repulsion motor and,

o^motor?
118

once ^ nas Stained a suitable speed, the commu-

tator is automatically short circuited and the

machine runs as an ordinary single phase induction motor. A
good starting torque is thus secured, and the efficiency when

loaded is satisfactory. The power factor is also much higher than

for the repulsion motor.

The Latour motor is virtually a combination of a repulsion

motor and a series motor. The separate field magnet coils of

the ordinary repulsion motor are replaced by a distributed wave

winding embedded in slots. After passing through the wave
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windings the current passes through the rotor by means of

brushes, the line joining which is at right angles to the line

joining the brushes Bl and B2 in Fig. 185. This motor has a high

efficiency and a high power factor.

The principle of the Winter-Eichberg motor is practically the

same as that of the Latour motor. Instead, however, of letting

the main current pass through the rotor, an auxiliary current

is obtained from the secondary terminals of a transformer, the

primary of which is connected with the mains, and this current

is led into the rotor by means of brushes pressing on a commu-

tator, in a similar manner to the way the main current is led into

the rotor of the Latour motor. The speed of the rotor can easily

be varied within wide limits by regulating the pressure applied
to the rotor brushes.
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CHAPTER XVI.

The transformation of alternating to direct currents. Single phase rotary

converter. The heat developed in the armature coils. Armature reaction.

The alternating component of the direct voltage. Two pole polyphase
converter. The voltage ratio. Armature reaction in polyphase con-

verters. The alternating component of the direct voltage. Finding the

armature reaction from the characteristic curve. Compounding a rotary

converter. Starting converters. Parallel running. Inverted rotary

converters. Data of a 200 kilowatt rotary converter. Double current

generators. References.

IT is found in practice that electricity can be generated very

economically when the generating units are large

formation of an<^ when the ratio of the average output of the

alternating to station to the maximum output is high. This ratio is
direct currents.

called the load factor of the station. The maximum
value of the load factor is unity, and it has this value when the

load has always the same value. As a rule, the more diversified

the nature of the load supplied by a station the higher will be

the load factor. It is now the customary practice to build large

generating stations in places where coal is cheap, where abundant

water can be had for the boilers and condensers, and where rents

are low. As these stations are generally at a considerable distance

from the distributing substations, it is necessary to transmit the

electric power at high pressures in order to avoid either excessive

losses due to the heating of the mains or a very heavy initial

outlay on copper for them. Steam turbines are usually employed

to drive high voltage three phase generators, and the electricity

is transmitted by three core underground cables or by overhead

wires. At the substations the power is generally transformed to
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lower pressures and converted into direct current for transmitting

power to electric tramways or for lighting. One great advantage
of converting the alternating into direct current is that we can

use accumulators for storing the electric energy and thus easily

diminish the fluctuations of the load and so raise the load factor.

The conversion may be done by means of motor generator sets

(see p. 176) either with or without intermediate transformers.

The motor part of the set may consist of a three-phase syn-

chronous or induction motor, and the generator is simply an

ordinary direct current dynamo. The efficiency of the combina-

tion is Tjtfz, where % is the efficiency of the motor and 772 is the

efficiency of the dynamo.
Instead of having two separate machines to convert the

alternating into direct current, we can place the alternating and

direct windings on one armature. The alternating current neces-

sary to drive the machine as a motor can be supplied through

slip rings on the shaft of the armature, and the direct current

collected from a commutator on the same shaft. A still further

simplification can be made by combining the two windings into

one so that the alternating and the direct currents flow in the

same conductors. The winding of the armature is practically the

same as that of a direct current machine and the commutator

bars are connected with it in the same way. The slip rings are

connected with armature conductors whose angular distances from

one another equal 360/pg, where 2p is the number of poles, and q

the number of phases. A machine of this type is called a rotary

converter.

We shall first consider the single phase rotary converter. Let

us suppose that we have a direct current bipolar
Single phase .

r

rotary con- dynamo with a ring-wound armature (Fig. 186) and
vcrter

that two commutator bars at an angular distance

apart of 180 are connected with two slip rings on the shaft.

This machine will be a simple form of rotary converter. Let us

suppose that the brushes pressing on $x and $2 are connected with

the alternating current mains. Let us also suppose that the

field magnets are separately excited by direct current. If the

frequency of the supply be o>/27r, the machine will run as a

R. ii. 27
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synchronous motor at the speed w (Chapter iv). For instance, if

the frequency were 50, the armature would make (o>/27r) 60, that

is, 3000 revolutions per minute when the machine is running as

a synchronous motor. In this case, if the armature reaction and

the resistance of the armature windings be negligible, the applied
P.D. has its maximum value when ab (Fig. 186) is vertical and is

zero when ab is horizontal. As the armature rotates, an electro-

motive force is developed between the brushes Bl and B2 in

Fig. 186. Simple form of single phase rotary converter. Alternating currents

are supplied by the slip rings S^ and S2 and direct currents are taken from B!
and .B2 .

exactly the same way as in a direct current machine. If the

number of the commutator segments be infinite, this electromotive

force E will be constant, and will equal the maximum value of

the applied potential difference. Hence, if the applied potential

difference e follow the harmonic law, we may write

e = E cos art,

when we reckon t from the instant when ab is vertical. If V
denote the effective value of e, we have

VfE = I/V2= 0707, nearly (1).
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We see that, when the applied wave is sine shaped, the voltage

on the direct current side got from a rotary converter is about

forty per cent, greater than the effective value of the applied

alternating voltage.

In the above proof we have neglected the effects of armature

reaction. In getting approximate formulae we may neglect the

effects of armature reaction, but we shall see later on that in the

case of the single phase rotary converter, the armature reaction

is appreciable. It not only distorts the wave of the P.D. between

the slip rings but it also introduces an alternating current com-

ponent into the direct current side.

Let us suppose that the brushes Bl and B2 (Fig. 186) are

joined through a resistance. A direct current will now flow in

the armature windings, in addition to the alternating current,

and will magnetise it in such a way that the magnetic forces

produced by the direct current component of the field will tend to

stop its motion. The direct currents therefore flow in the same

direction as they do when the machine is acting as a dynamo.
When the alternating current is in phase with the applied

electromotive force, we see that the alternating current component
in the windings will always be flowing in opposition to the direct

current component, as the former component produces the

rotation.

Let A be the effective value of the alternating current, C the

direct current, cos ^r the power factor and 77 the efficiency of the

converter. The power expended on the machine is VA cos ty and

its output is EC. Hence

7)
= ECj(VA cos

A/T)
and A = EC/(rjVcos ^).

If the current and the potential difference waves follow the

harmonic law and if the voltage-drop in the armature windings

be negligible when compared with V, we have

..................... (2),

where / is the maximum value of the current.

We see therefore that I will be greater than 20. In practice

it is possible for
77 to be as great as 0*95 and for cosi/r to be within

about one per cent of unity.

272
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We shall suppose that there are 2m coils evenly spaced

round the circumference of the ring, so that the
The heat de-

veioped in the planes of consecutive coils make an angle 7r/m with

each other. Let us first consider the power ex-

pended in heating the various coils. When ab is in the position

shown in Fig. 186, the current i in the coil c will be given by

i = (1/2) cos (tot
-

ifr)
-

0/2,

where cos ty is the power factor of the load and the coil c is to the

right of the brush Bz . When it is to the left of this brush

we have

When t is zero the line ab is vertical. Let us suppose that the

plane of the coil c makes an angle 7r/2ra with ab at this instant.

The current i in the coil will be given by

i = (1/2) cos (tot
- ^) - 0/2,

from t = to t = T/2- T/4<m,

and i = (7/2) cos (tot
-

ty) +

from t = T/2- T/4<m to T/2.

Hence if r be the resistance of this coil, the mean value of ri2 for

the half of a period, and therefore, the mean value W^ of the power

expended in heating the coil is given by

rT/2-T/4m rT/2W1
=

(2r/T) i*dt+(2r/T)
JO J T/2 -

:

rT/2
= (2r/T) {(7

2
/4) cos2

(tot
- ^) + 2

/4} dt
J o

T/2-T/4<m

)

rT/2 \

I COS (cot A/r) dt\
J T/2-T/*m )

= r (7
2

/8 + 2

/4)
-

(T/TT) sin (7r/2m + ^) . 70
= r (0/2)

2

{1
-

(4/Tr) sin (7r/2m + f ) . (7/0)

Similarly if W2 denote the mean power expended in the coil

(Fig. 186), we get

W2
= r (0/2)

2

{1
-

(4/7r) sin (37r/2m + f ) . (7/0) + (1/2) (7/0)
2

}.
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When
T/T

is less than ?r/2 TT/W, that is, in the normal condition

of working, we see that W2 is less than Wi and therefore the

heating of the coil d will be less than that of c. When ty is

zero, the nearer the coil is to a segment connected with a slip ring

the hotter will be the coil. This result is well known in practical

work.

The average value Wm of the power expended in heating the

rath coil is given by

Wm = r (<7/2)
2

(1
-

(4/Tr) sin {(2m
-

1) 7r/2m + f }
. (7/0)

= W, + (2/7T) rIC cos (7r/2ra) sin
i/r.

Hence Wm is only equal to TFi when -v/r
or G is zero.

In Fig. 186, the heating of the coils e and/ will be a minimum
and the heating of the coils c and h a maximum, when o/r is very
small. In general, the coils for which sin {(2p 1) (7r/2ra) + ty} is

smallest are the coils which heat most, and the coils for which

(2p 1) (7r/2m) -f'v/r
is nearest to ?r/2 are the coils which heat

least. A maximum value to the power expended in heating a coil

is r (C
2

/4 + p/s) and a minimum value is r (C
2
/4 + 7 2

/8
- 01/IT).

If W denote the mean value of the total power expended in

heating the armature, we have, since the heating of the two sides

of the armature is obviously symmetrical,

W=2(Wl +W2 + ... + Wm)

= 2mr (C/2)
2

[1
-

(4/w) cos ^/{m sin (7r/2ra)} . (I/C)

+ (1/2) (7/C)'] ............ (3).

Now m sin (7r/2wi) increases as ra increases, and thus the total

heating is greater the more we distribute the windings on the

armature. The increase of the heating, however, due to this

cause is very small as ra sin (?r/2ra) only increases by about three

per cent, as ra increases from 4 to infinity.

If the voltage drop in the armature windings be negligible

compared with V, we have by (2) and (3)

W = 2mr (C/2)
2

[1
- S/^ra sin (IT/2m)} + 2/T;

2 cos2

^].

Hence, when ra is large, we have

W= 2rar (<7/2)
2

[1
-

16/7r
2
?7 + 2/^cos

2

^] ......... (4).

The power expended in heating the armature, if the machine
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were acting merely as a dynamo giving the same output, would

be 2mr (Cy2)
2

,
and since T? cos ty is less than unity we see that the

heating of the armature of the converter will be greater than this.

If 77 and cos ^r are each equal to unity we have

F= 1-38. 2mr (<7/2)
2

and if they are both equal to 0*9, we have

W = 2-25 . 2mr ((7/2)
2
.

Notice that 2mr is the resistance of all the armature windings in

series and mr is the resistance of each half of the armature

windings.

The above formulae could also be proved as follows. We can

regard the current in every coil as the resultant of two alternating

currents, one of which (//2) cos (wt ^) follows the harmonic law

and the other + (7/2 is rectangular in shape. Now by Volume I,

p. 151, the phase difference
-\/r'

between a rectangular shaped wave

and a sine shaped wave, when the time lag between them is

-
7T/2 + (2p

-
1) (7r/2m) + ^,

is given by

cos $>'
= -

(2V2/7r) cos {- 7T/2 + (2p
-

1) 7r/2m + ^}
= - 0-9003 sin {(2p

-
1) 7r/2m + f }.

Hence we find at once that

W.p
= r [/

2

/8 + C 2

/4
- 2 (7/2\/2) ((7/2) (2\/2/7r)

sin {(2p
-

1) 7T/2w + i/rj],

and proceeding as before we get the same formula for W.

Since, on the alternating current side, a rotary converter acts

Armature l^e a synchronous motor, it runs at exactly the same
reaction.

speed at all loads. If o)/27r be the frequency of the

supply, the angular velocity of a bipolar machine will be &>. We
shall now calculate the magnetising forces due to the currents

in the armature windings of the machine shown in Fig. 186. We
shall assume that the currents in each half of the armature

windings are equal. Let us first consider the effect of the

alternating current (7/2) cos (cot
-

-^). At the time t, ab in

Fig. 186 makes an angle wt with the vertical, and thus, if a current

i flowing in each half of the ring produces a magnetising force

2ki in the direction ab, where & is a constant, we see that the
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vertical component of the magnetising force at the time t will

be 2ki cos cot and the horizontal component will be 2ki sin cot.

Hence, substituting (I/2)cos(cot-^r) for i and taking the mean
value of 2ki cos cot from t equal to zero to t equal to T/2, we

get for the mean value of the vertical, that is, the transverse

component $' t of the magnetising force, due to the alternating

current, the equation

and similarly we have

where $' is the mean value of the direct component of the

magnetising force.

The magnetising force due to the direct current in the

armature windings will act in the vertical direction, and its

magnitude will be kC, since it must act in the direction opposite

to that of the magnetising force due to the alternating currents.

If, therefore, J e and $ are the mean values of the transverse and

direct components of the magnetising forces due to both the

direct and the alternating currents, we have

and ^
By (2) we see that $t is also given by

^ = !(i-<?)A?)<w .....................(6).

If
7j

were unity the transverse component would vanish, and if

it were 0'8, we would have J^ = &(7/4. If 77 were 0*5, <$t would

be equal to kC, and for smaller values of the efficiency it would

be greater than kC. Unless therefore the efficiency of a rotary

converter be very low the transverse magnetisation of the field is

much smaller than when the machine is acting as a direct current

dynamo having the same output.

In Fig. 187 a diagram is shown of the magnetising forces

acting on the field. If
-fy

is lagging $ acts in the same direction

as the magnetising force due to the field magnet ampere turns

(see p. 137). Now by diminishing the value of the direct current

exciting the field we increase ty, and thus increase the magnetising
effect of the armature reaction. Some machines in which the
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armature reaction is large will run with no direct current excita-

tion at all. In this case, however, ^ is large, and so the efficiency

is low.

In practice, rotary converters are worked at the excitation

which makes the alternating current a minimum. In this case

the transverse magnetisation is small, and so the sparking at

the commutator brushes is slight even in machines which spark

considerably when working as dynamos.

Field-magnet ampere turns.

kC

Fig. 187. Magnetising forces producing the magnetic field of a rotary

converter. The resultant transverse component is almost zero.

In the preceding section we have considered the mean effects

of the armature reaction over half of the period

current com- of revolution of the rotor. Hence any effect the

dh-'ectcurrent period of which is this half period or any submultiple
voltage. o -j. w -jj have cancelled out. We shall now show

that there is an important component that has to be taken into

consideration in the case of a single phase converter.

The field produced by the alternating currents is an oscillating

one, and is fixed relatively to the armature. Owing to the varia-

tion of the reluctance of the path of the magnetic lines due to the

magnetomotive force of the armature currents, this oscillating

field does not necessarily follow the harmonic law even when the

currents are sine shaped. In order, however, to simplify the

problem, we shall suppose that it does. In this case the oscillating

field can be resolved into two component fields rotating in opposite

directions. The magnitude of each of the component fields is

half that of the amplitude of the oscillating field. One of the

component fields will be fixed in space, its direction making an
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angle *fy
with the vertical, and its magnitude will be proportional

to 1/2. Hence, as we saw in the preceding section, the transverse

and the direct components of the field due to armature reaction

are proportional to (//2) cos ty C and (//2) sin ty respectively.

The other rotary component of the oscillating field rotates

with double the angular velocity of the armature. Hence in the

half period it will have glided once round the air-gap, and there-

fore will introduce a component electromotive force into the

direct current side. If we neglect the distortion of the field

produced by the magnetising effect of the armature currents and

suppose that the excitation is adjusted until the power factor is

unity (i/r
=

0), the voltage between the brushes is of the form

E + OL.I sin 2a)t, where a is a constant. The effective value of the

voltage between the brushes is (E
2
4- a2/2

/2)
1/2 and hence it varies

with the load. In single phase converters, therefore, when the

armature reaction is appreciable, the ratio of the alternating to the

direct voltage is not a constant even when the resistance of the

armature windings is negligible.

The presence of the alternating component in the direct

voltage can be shown by connecting a magnetic and a hot wire

voltmeter in parallel across the commutator brushes. The diffe-

rence between their readings will increase with the load. The

weaker the exciting field the more marked will be this effect.

We shall now consider the case of a two pole polyphase rotary

converter. Let us suppose that the machine (Fig.Two pole . .

polyphase 188) has a ring armature with a Gramme winding

(Fig. 186), arid let n be the total number of turns in

one phase ;
for instance, the number of turns between A and B.

Let there be q phases and let qn = Zm, so that 7r/m is the angle
between the planes of consecutive turns. Let el be the maximum
electromotive force developed in one turn and let E be the direct

current electromotive force between the commutator brushes.

Then, neglecting the resistance of the windings, we have

E el sin ('Trim) + el sin (2?r/??i) + . . . + el sin {(m 1) 7r/m}

=
e-L cos (7r/2ra)/sin (7r/2m).

If v be the potential difference between the slip rings connected

with A and B, and if the plane of the winding connected with A
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make an angle cot with the vertical, we have, when the resistance

is negligible,

v = el sin cot + ^ sin (cot + tr/m) + . . . + e sin
[cot + (n 1 ) (-Tr/ra)}

= el sin {cot + (w-
-

1) (ir/2m)} sin (W/2ra)/sin (7r/2m)

= j sin
{o> + (w

-
1) (?r/2w)) sin (mr/2m)/ cos (IT/2m).

Hence, if F be the effective value of v, we have

V= (J&7V2) sin (W/2ra)/cos (w/2w) = (^/V2) sin (TT/^/COS (w/2m).

In practice m is very large and so we can write unity for

cos(7r/2m). Hence, we find that

F=(#/V2)sin(7r/g) (7).

In Fig. 188 the windings are connected in mesh. If we

construct a regular polygon of q sides each equal to F, these sides

will represent the mesh voltages in magnitude and phase. The

Fig. 188. Two pole rotary converter for eight phases. Slip rings and

connections for one phase only are shown.

star voltages of the system will be represented by the lines joining
the centre of this polygon to the angular points. If Vs denote

the effective value of the star voltage, we have

F.-F/{2 Bin (w/g)J -^/(2V2) (8).

Hence the star voltage is the same whatever may be the number
of phases.
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In practice, the machines are generally multipolar. The

general arrangement of the brushes and slip rings in this case

will be understood from Fig. 189. On the direct current side,

brushes of like sign are connected in parallel, and on the alter-

nating current side, circuits of the same phase are connected in

parallel between the same pair of slip rings.

Fig. 189. Field magnets, direct current brushes, commutator and slip rings

of multipolar three phase rotary converter.

Let E be the direct voltage, and let C be the direct current

in the main joined to one set of brushes. The direct current

output will be EC. If V be the mesh voltage of the supply and A
the effective value of the alternating current in each of the three

mains, the electric power received by the machine is

V3 VA cos
i|r.

Hence if
77 be the efficiency

and thus A =

If, therefore, we can neglect the effect of the resistance of the

windings on the ratio of E to V, we get, by (7)

A = \2 C/fo3 sin (TT/S) cos ^} = 2 2C/(3*7 cos ^) . . .(9).

When there are q phases, we have

A = ^/{2sin(,r/?)}
..................(10),

where A^ is the current in each main and A is the current in
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each winding. The power given to the rotary and expended on

the q phases equals qVA l cos^jr )
and hence, it equals

qVA cos i|r/{2 sin (ir/q)}.

We have, therefore,

EG = rjqVA cos ^/{2 sin (ir/q)},

and thus by (7)

A = 2^2C/(qrjcos^) (11),

and / = 4(7/(^cos^) (12),

where / denotes the maximum value of the alternating current

in a main. For given values of 77 and cos -^, we see that qA is

independent of the number of phases, and thus the weight of

the copper used in the mains is the same whatever be the number

of phases we adopt.

The following table is calculated by means of formulae (7), (8),

(10) and (11). V8 is the star voltage and V the mesh voltage

of the supply. A is the current in the main, and A t is the current

in the winding of a mesh connected armature.

Slip rings
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Let us suppose that t is zero when the coil of the winding in

connection with A (Fig. 188) is immediately under the top brush.

The expression for the current in this coil of wire is got by

prefixing the negative sign to (7/2, in the above formula, for the

first half of the period, and the positive sign for the second half of

the period. Thus if Wl denote the power expended in heating
the coil, we get

W, = r [I
2

/'{8 sin 2

(ir/q)}-+ <7
2

/4
- 2 [CI/ 4V2 sin (ir/q)} (2\/2/7r)

cos {(n 1) 7r/2m

Hence, making use of the approximate equation (12), we find that

Wl
= r (C/2)

2

[1-16 cos (vr/q
-
7r/2m

-
^)/{7rqr) cos

i|r
sin (ir/q)}

since nir/2m = ir/q.

Similarly, if TF2 denote the power expended in heating the

next turn of wire, we have

Wa
= r (<7/2)

2

[1-16 cos (ir/q
- STT/2m - ^)/{irqri cos ^ sin (ir/q)}

If
i/r

be zero, we see that the coils directly connected with

the slip rings get heated most. As formerly, however, when the

current is lagging or leading this is not the case. For instance,

when ty equals vr/q 7r/2ra, the power expended in heating a turn

of the winding increases continuously as we pass from one slip

ring connection to the next. It is also easy to see that for

a given number of turns, the greater the number of phases,

the lower will be the temperature of the coil subjected to the

maximum heating.

If W denote the total heating of the armature, then

W=2mr ((7/2)
2

[1
- 16/{w^w sin (7r/2m)}

+ 8/teV cos2 ^ sin2

(ir/q)}].

When m is large we can write 7r/2ra for sin (7r/2m), and thus

W = R (<7/2)
2

[1
-

16/(7r
2

77) + 8/fey cos2 f sin2

(ir/q)}] . . .(13),

where R is the resistance of the whole armature winding. Putting

q equal to 2, we see that (13) reduces to (4). It has to be

remembered that for a two phase converter q equals 4.
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When both 77 and cos^/r are unity, we get from (13) the

following numerical values.

Number of phases, q
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The voltage ratio for three phase converters in practice does

not differ much from the value O612 we found
ltage above by making several assumptions. The poles

(Fig. 188) of a bipolar converter only embrace a

fraction of the armature surface and the flux under the poles

is concentrated in a fairly uniform manner. Outside the air-gaps

under the polar faces there are practically no lines of force, and

the induced electro-motive force in a turn is almost zero as soon

as it leaves the extremity of a polar face. In general therefore

the sine curve hypothesis is only roughly approximate. It is

found by experiment that the ratio of V to E in polyphase con-

verters varies with the ratio of the polar arc to the polar step.

Volts 800

700

600

400

300

200

100

/
2000 4000 6000 8000 10000 12000 14000

Excitation in ampere turns

Fig. 190. Alternating and direct current voltage in a 150 kilowatt four pole

three phase rotary converter for different excitations. The ratio V\E 0-605 both

for increasing or diminishing excitations.

The results of a test by de Marchena on a 150 kilowatt three-

phase rotary converter are shown in Fig. 190. The air-gap of this

machine which has four poles is 0*55 cm. and the ratio of the polar



432 ALTERNATING CURRENT THEORY [CH.

arc to the polar step is 0*75. The figures obtained show that,

within the limits of experimental error, the ratio of V to E is

constant and equal to 0'605, whether the excitation is being
increased or being diminished. This ratio is only about one

per cent, less than that obtained on the sine curve hypothesis.

A similar test on a 250 kilowatt four pole three phase converter

gave the ratio as 0*615, which is almost in exact agreement with

the theoretical number. The air-gap of this machine is 0'35 cm.

and the ratio of the polar arc to the polar step 0'76.

We shall now consider the armature reaction of polyphase

converters. In order to simplify the theory, we shall

assume that the reluctance of the paths of the

magnetic flux due to the magnetising forces of the

armature currents is constant, and that these paths

are symmetrically situated relatively to one another. We shall

also suppose that the number of windings is infinite, and that

the currents in them follow the harmonic law. If the number of

poles be 2p, a magnetic field will be produced gliding backwards

in the air-gap with an angular velocity co/p. The field produced

therefore will be fixed in space and, as in the analogous case of the

bipolar single phase converter, we find that

and $ = k (ql/ty sin i^,

where $t is the transverse and $ the direct reactive magnetic

force acting on a pole, and J is the maximum value of the alter-

nating current in one of the supply mains. If the efficiency of

the converter be rj, we have, by (12),

(2//4) cos ^ =

and thu&

Hence if the efficiency be 100 per cent. t is zero. If in addition

the power factor cos ^ be unity, $ will also be zero. A perfect

rotary converter, therefore, acts like a synchronous motor in which

the transverse magnetisation of the field is zero. If the current

be lagging, the field is strengthened by the armature reaction $,

and if it be leading, the armature reaction weakens the field.
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If the efficiency of the machine were 90 per cent., the transverse

magnetisation would only be one-ninth of the value it would

have if there were only the direct current G in the armature.

If the efficiency were 80 per cent., it would be a quarter of that

which the direct current acting alone would produce.

In practice, instead of having an infinite number of windings

symmetrically arranged, we have a finite number

arranged in coils. Thus the magnitude of the

^e^ produced by the armature currents is not

independent of its angular position in space, and

therefore a perfect rotary field will not be produced. In this

case the greater the number of phases, the higher will be the

frequency, and the smaller the amplitudes of the alternating

current components due to this effect.

In a q phase system, for instance, there will be q slip rings

and q windings connected with them. We may suppose that the

q windings are exactly similar to each other, and hence, after an

interval T/q, the potential differences between the direct current

brushes will be exactly the same as at the beginning of the

interval. The period of the alternating component of the voltage

on the direct current side, therefore, will be the qth part of

the period of the applied potential difference. These pulsations

may cause loss due to the eddy currents they produce in the

field magnets. Thus it is advisable to have a large number

of commutator bars and to make the field magnets of laminated

iron stampings.
In practice the number of slip rings employed is 3, 4, 6 or 12.

Single phase converters are rarely used in practical work as, on

heavy loads, some of the coils usually heat excessively, and there

is sparking at the brushes due to the variations in the flux in the

armature caused by the armature reaction. When 6 or 12 slip

rings are used, the amplitudes of the pulsations of the flux are

inappreciable. It is to be noticed that a six phase converter can be

operated from three phase mains. If the slip rings be denoted by

], 2, 3, 4, 5 and 6, then 1, 3 and 5 will form a three phase system

and so also will 2, 4 and 6. If therefore we have a three phase

transformer with two distinct secondaries mesh-wound, and having

R. n. 28
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terminals a, b, c and a', b', c' respectively, we can run the converter

by connecting a, b and c with 1, 3 and 5, and a', b' and c with

4, 6 and 2.

The general shape of the characteristic curve of a rotary

Finding the
converter is shown in Fig. 191. The armature is

armature driven at constant speed and the excitation is varied,reaction irom .

*

the character- simultaneous readings being taken of the alternating

voltage V between the slip rings and of the exciting
direct current. In the figure PN is the value of V corresponding
to the exciting ampere turns ON.

Volts

O N' IM Excitation

Fig. 191. The open circuit characteristic curve of a rotary converter. The

armature is driven at a constant speed, and PN gives the voltage when the excita-

tion is ON.

Let V denote the value of V when the machine is loaded, and

let P'N' (Fig. 191) equal V. Then ON' is the effective value of

the exciting ampere turns and thus

where k' is a constant and cos ty is the power factor. If therefore

we know the characteristic curve and the values of /, -v/r,
V and V,

we can find k'. We are thus able to predetermine the value of V,

and therefore also the value of E, for any given current and power
factor. The constant Ic therefore can easily be determined experi-

mentally. Its value depends on the breadth of the poles, the

number of phases, the number and width of the slots, etc., and so

it would be very difficult to find it by pure calculation.
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The field magnets of a rotary converter may have their wind-

ings connected in shunt between the direct current
Compounding .

a rotary brushes, or they may have a compound winding.
If the effective value of the potential difference

applied to the slip rings is absolutely constant, that is, if the

resistance and self inductance of the mains supplying current to

the rotary converter are zero, then the regulation is perfect. We
can in this case annul or even reverse the excitation without

sensibly altering the voltage on the direct current side.

To alter the voltage on the direct current side we must alter

the voltage applied to the slip rings. This may be done by means

of a variable choking coil inserted in the alternating current circuit,

or by a transformer or booster which has a variable ratio of trans-

formation. Let us suppose that the excitation is adjusted so that

we have a power factor of unity on no load, then, when we alter

the applied potential difference, the power factor, as a rule, will no

longer be unity and the excitation will have to be altered. It is

important that this be done automatically. We shall therefore

consider what the resistance per turn of the shunt circuit should

be, and also the number of turns of the series windings, in order

that the power factor may be unity when the direct current circuit

is open, and also, that it should be unity when the direct current

voltage is E and the current C.

Let r be the resistance per turn of the shunt winding, so that

E/r gives the ampere turns of excitation due to the current in the

shunt winding when E is the direct voltage. Let also n^ be the

number of turns in the series winding, W7hen the direct current

is C the excitation of the machine is

nJ3 + E/r + V </2A sin ^,

where A is the effective value of the alternating current, and k' is

a constant Now by hypothesis ^ is to be zero, and by (7) V equals

(E/\/2) sin (ir/q), and thus the excitation equals

r sn

From the characteristic curve (Fig. 191) we can find the excitation

X which produces the voltage F, and hence

nlC+\/2V/{rsin(Tr/q)}=X ............... (a).

282
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If X be the excitation which produces the no-load voltage F
,

we have

V2F /{rsin(7r/2)}
=X (b).

Equation (b) determines the value of r, and from (a) we can then

find H!.

If we pat an inductive coil, or, as it is generally called, a

reactance coil, in the circuit of the leads connecting a single phase

rotary converter with the supply mains, it is found that we can

both raise and lower the potential difference between the slip rings

by altering the excitation of the converter. When the excitation

of the converter is greater than that required for the maximum
value of the power factor, the armature reaction tends to de-

magnetise the field, and so the phase of the armature current is

in advance of the phase of the potential difference between the

slip rings. The reactance coil and the armature, therefore, act

like an inductive coil and a condenser in series, and partial

resonance (Vol. I, p. 81) occurs. In this case the voltage V
across the slip rings can be greater than the potential difference

between the supply mains. Since the ratio of V to E is nearly

constant, it will be seen that we can vary V, and therefore also E,

through an appreciable range by varying the excitation of the

machine. With polyphase converters when an inductive coil is

placed in each lead connecting a main with a slip ring, a similar

regulating effect on E is produced by altering the excitation.

Experimental results obtained by de Marchena are shown

graphically in Figs. 192 to 195. The machines experimented on

had outputs of 150 and 300 kilowatts respectively. In Fig. 192,

Volts
560

3QOAmperes(B&C)
3 Exciting amperes(A)

Fig. 192. A is the open circuit characteristic of a 150 kilowatt three phase

converter. B shows the variation of the voltage with the load, shunt excitation

only being used. C shows the variation of the voltage with the load with compound
excitation.
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the curve A shows how the voltage on the direct current side on

open circuit varies as the excitation of the 150 kilowatt converter

is altered. In this test the only reactance in the circuit was that

of the transformer which supplied the converter. The curve B

Percentage Efficiency
100 1

100 150 200 250 300 Amperes

Fig. 193. Efficiency curve of a 150 kilowatt converter. The normal full

load is 250 amperes.

shows the variation of E as the load is increased when a shunt

winding only is employed. The curve C shows the variation of E
with the load when the compound winding is used.

In Fig. 193 the efficiency curve of this machine is shown, and

in Fig. 194 the V curve at no load.

Amperes in Armature
400

300

200

100

3 4 5

Amperes of excitation

Fig. 194. V curve at no-load of a 150 kilowatt converter.
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In a test of a 300 kilowatt machine, the results of which are

shown in Fig. 195, a choking coil was put in the main circuit.

The voltage drop across the terminals of this choking coil at full

load was ten per cent, of the total applied voltage. Curve A
shows how the voltage on the direct current side varied with the

load when the series winding was connected so that the ampere

Volts

600

500

400

300

200

100

100 200 300 400 500 600 700

Amperes

Fig. 195. Load characteristics of a 300 kilowatt rotary converter having a

choking coil in the main circuit. A is the characteristic with compound winding.
B is the characteristic with shunt winding alone. C is the characteristic with

compound winding when the series windings are reversed.

turns due to it increased the total excitation. Curve C shows

how the direct voltage varied with the load when the current

passed through the series coil in the reverse direction, so that the

excitation diminished as the load increased. Curve B shows the

result of a test with the series coils short circuited.

The voltage could be varied from 512 to 584 volts at full

load, and from 555 to 605 at no-load, by means of the regulating

inductive coils in the mains. By altering the regulating resist-

ance in the shunt coil, when the series coil was short circuited, the

voltage could be varied from 512 to 595 at full load, and from 544

to 640 at no load. The curve A shows that this machine can be
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compounded so as to give almost a straight line for the curve of

the voltage on the direct current side at all loads.

A converter can be started from either the direct or the

alternating current side. If we start it from the

direct current side, it is started in the same way as

a direct current motor. Some synchronising device is

employed to indicate when it has obtained the proper speed and

also the proper moment to close the main switch. When it is

started from the alternating current side, polyphase currents are

taken from the mains by means of a pressure reducing transformer,

and pass into the armature by the slip rings. A rotating magnetic
field is produced, and the torque due to the eddy currents and the

hysteresis in the iron is sufficient to start the armature rotating.

The voltage between the brushes on the direct current side now

excites the field, and the armature finally falls into step with the

rotating magnetic field, the machine acting like a synchronous
motor.

During the start the field magnet windings act like the

secondary circuit of a transformer, and very high voltages may
be generated which may spark across and break down the insula-

tion of the field magnet windings. For this reason the field

magnet windings are sometimes divided into four sections which,,

by means of a ' break up
'

switch, are on open circuit during
the start and are closed when the speed approaches synchronism.

When the machine is running it may be found that the polarity

of the field magnets has been reversed. It is best to have a

double pole reversing switch in the main circuit so as to obviate

the necessity of making a new start when the polarity is found to

be reversed. A pole indicator or a suitable voltmeter will show

at a glance whether the connections need to be reversed.

Rotary converters as a rule work well in parallel ;
the rotating

parts are lighter than in motor generators, and thus

they respond more quickly to the regulating forces.

When the loads are very variable, as in traction work,
the converters are generally compound wound. In this case care

must be taken to connect the series windings by equalising cables
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in exactly the same way as ordinary compound direct current

machines are connected.

Sometimes phase swinging is set up by a sudden variation in

the load. A variation of the current in the series windings alters

the ampere turns of excitation, but the flux is not instantaneously

modified. Hence some machines may respond more quickly

than others, and thus the voltages of the various machines may
differ and current oscillations be started. To prevent this effect,

the pole pieces are sometimes made of solid metal and their ends

connected with copper bridges, thus forming closed conducting
circuits which tend to damp out oscillations of the magnetic field

(p. 191). This procedure, however, lowers the efficiency of the

converters.

When a rotary converter is used to convert direct current into

alternating it is called an inverted rotary. The formulae

rotary found earlier in the chapter still apply if we write 1/rj

for 77 in them, and notice that the direct current side

now acts as the motor and the alternating current side as the

generator. Since the speed of a direct current motor depends on

the excitation of the field magnets, it will vary with the magnitude
and the power factor of the load. If the load be inductive the

armature reaction will weaken the field (Fig. 17, p. 33). Hence

the speed of the rotor will increase and so also will the frequency.
If I sin

-\Jr
be large the speed may be dangerously high. For this

reason a separate exciter is sometimes fitted on the shaft of the

rotor, so that if the speed quicken the increased current in the field

magnet windings may neutralise to a certain extent the armature

reaction of the alternating currents. Inverted rotaries, however,

are not often used, motor-generators being preferred.

The following data of a 200 kilowatt three phase converter,

Data of a made by the General Electric Co. of America and

rotary

v
installed in the Brooklyn electric station, are in-

converter.

Number of revolutions per minute ........................... 375

Number of poles ................................................... 8

Frequency of the alternating current (375 x 8)/(60 x 2) i.e. 25

Alternating current in amperes at full load ............... 1500
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Applied alternating voltage .................................... 82*8

Direct voltage ...................................................... 125

Diameter of the armature in cms............................ 122

Breadth of the armature in cms................................ 1 7*8

Air-gap in centimetres .......................................... 0*635

Number of slots ................................................... 240

Number of conductors per slot ................................. 2

Number of commutator bars ................................. 240

Diameter of the commutator in cms......................... 92

Number of rows of brushes .................................... 8

Number of carbon brushes per row ........................... 9

Surface of contact of each brush in sq. cms................ 8

Flux per pole in c.G.s. units .............................. 4*38 x 106

Flux density in the field magnets at full load ............ 12000

Flux density in the air-gap at full load ..................... 8000

Flux density in the teeth between the slots at full load 21000

Flux density in the armature at full load .................. 9500

(polar arc)/(polar step) = 0*637.

(alt. voltage)/(direct voltage)= F/#= 0*633.

The following table gives the losses and the maximum rise of

temperature of this machine when running at full load as a con-

verter and as a direct current dynamo.

Converter Dynamo
C 2R losses in watts 3500 6005

Total losses in watts 6500 9130

Temp, rise of the armature 27 C. 47 C.

Temp, rise of the commutator 36 C. 52 C.

If we assume that 77
= 1*00 and cos ty

= 1, and that the currents

follow the harmonic law, the ratio of the C2R losses when working
as a converter to the C2R losses when working as a direct current

dynamo would be 0'564. The ratio found from the above test is

0'583. The curve of the applied potential difference was more

peaky than a sine wave, and the heating losses in the converter

are therefore greater than they would be if the wave were a pure
sine curve, As a rule, the flatter the wave the less will be the

heating of the armature windings of the converter.

When the rotor of a converter is driven mechanically, we have

an alternating electromotive force developed between

current the slip rings, and a constant potential difference

between the brushes. It can therefore supply both
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direct and alternating current at the same time. A machine
constructed on this principle is called a double current generator.
These machines are useful when a power station has to supply
a constant load in its neighbourhood and a variable load at some
distance away. It combines the economy of a direct current

supply on a three wire system and the economy with which

power can be transmitted to considerable distances by high

voltage electric current. We shall only consider the case of

polyphase double current generators, as single phase arrangements
are rarely used in practice.

Fig. 196. Part of the commutator and two of the slip rings of a four pole

three phase double current generator.

The theory of such machines is almost identical with that

of rotary converters. The most notable difference is that in the

double current generator, the alternating current side is acting
like a generator and not like a motor. The alternating currents

in the armature windings therefore will generally be flowing in



xvi] HEATING OF THE ARMATURE 443

the same direction as the direct current, and hence the heating
of the armature and the transverse magnetisation of the field will

be greater than for a rotary converter.

Part of the commutator, two of the slip rings, two brushes and

one coil of a three phase, four pole, double current generator are

shown in Fig. 196. If we make the assumption that the shape
of the alternating current wave in a winding is a sine curve, and

that the direct current wave is a rectangle (Fig. 197), we get,

Fig. 197. Current waves in the armature of a double current generator.

using the same notation as in the corresponding problem of the

polyphase rotary (p. 429),

W1
= r [/

2

/{8 sin2

(ir/q)} + (7
2

/4

+ C7/{2 V2 sin (-rr/q)} . (2 V2/w) . cos (w/q
- IT/2m -

TF2
= r [I

2

/{8 sin2

(ir/q)} + C 2

/4

+ 011 {2 V2 sin (ir/q)} . (2 \/2/7r) . cos (irjq
-

37r/2m
-

Let us first consider the case when
i/r

is zero. In this case

the smaller 7r/q, the greater will be the heating in the first coil.

The coils in connection with the slip rings are the least heated,

and those midway between them are the most heated. In the

particular case, however, when ^r equals ir/q 7r/2m, the heating
of the coils connected with the slip rings is a maximum. We also

see that for a given number of turns, the power factor being unity,

the greater the number of phases the greater will be the heating
of the coils. The greater the number of phases, however, the

more evenly will the heat developed be distributed over the coils.
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If Wh denote the total heating of the armature, we have

2mr [(7
2

/4 + (CI/ir) cos -^/{n sin (w/2m)}

In this formula / is the maximum value of the current in a main

connected with a slip ring. If A be the effective value (J/V2) of

this current, and if m be large, so that we can write tt7r/2ra or Tr/q

for n sin (7r/2m), we find that

TFA = 12 ((7/2)
2

[1 + (4 \/2/7r
2

) g cos^ . (A/0)

+ (I/sin
2

(Tr/^K^/a)'] ......... (15),

where R is the resistance of the whole armature winding.
We see at once from this formula that if A and C remain con-

stant, the heating of the armature is a maximum when the power
factor is unity and is a minimum when the power factor is zero.

Let us suppose that the power generated on the alternating

current side is p times the power generated on the direct current

side, so that ^F^cos^ =pEC. By (10), 2A l siji('ir/q)
= A

J
and

by (7), V = (EI*/2)sm(ir/q). Hence A/C= 2p V2/(0cos^ ),
and

substituting this value in (15) we get

Wh = R (<7/2)
2

[1 + (16/7T
2

)p + M{22 sin 2

(ir/q) cos2

If W be the total output of the machine, we have

and thus

_RW* 1 + (16/^) p + Spy(f sin' (7r/g) cos'

In the particular case of a three phase machine, we have

_EW 2 1 + (16/7T
2
)p + 32jp

2
/(27 cos2

i/r)
h~~'~

It is easy to see that for a given output W, at a given power
factor cosi/r, the heating of the armature has a minimum value

when

___1-8/7T
2_P ~

32/27
-

8/7T
2 + (32/27) tan2^

0189
0-375 + 1-185 tan2 ^

, approximately.
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The expression for the minimum value of the power expended
in heating the armature equals

32/(27 cos*

which is approximately equal to

[1
-

0-0359/(0'564 + 1185 tan2

Hence this minimum value is not much smaller than when the

machine is supplying W watts on the direct current side.

The transverse armature reaction in a double current generator

is much greater than in a rotary converter. The formulae (5) for

the transverse and direct components of the magnetomotive forces

due to the currents in the armature now become

JTt
= -*{(//2)(x>s^ + C},1

and jr=-fc(//2)sinVr, j"

Thus considerable distortion of the field will be produced, and the

sparking at the brushes will be worse than if the machine were

acting as a direct current generator having an output EC. The

brushes also will require to be adjusted if the load alters, unless

some compensating device be employed to neutralise partially the

distorting effect of the armature currents on the field. Since the

machine is now acting as a generator, the armature reaction due

to a lagging current will tend to weaken the field and a leading

current will strengthen it.

It is necessary to construct the generator so that it acts

satisfactorily both as a direct current dynamo and as an alternator.

We must therefore construct it as a high speed multipolar direct

current dynamo and a low frequency slow speed alternator. The

mechanical difficulties in the way of a good design are therefore

considerable. The field magnets may be separately excited, other-

wise a shunt or a compound winding may be used. Since the ratio

of the direct to the alternating voltage cannot be altered, it is

only necessary to regulate the potential difference on one side

of the machine. This is generally done from the direct current

side, as the alternating potential difference can easily be regulated

at either end of the transmission line.

Double current generators are obviously of great use for
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distributing power when the direct and alternating current loads

do not overlap.

When double current generators or rotary converters are used,

having star wound armatures, the middle main of the three wire

direct current system of distribution generally employed should be

connected with the neutral point of the armature windings, and

the outer mains with the direct current terminals. It has been

found that with this arrangement 75 per cent, of the full load

current can be returned by the middle wire without upsetting

the balance of the potential differences between the middle and

the outer mains too much. This method of distributing power has

much to recommend it.
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WE shall now consider some of the problems which arise in

connection with the underground mains and overhead

mission of wires used for the transmission of electrical power
over considerable distances. We shall first consider

the simplified problems got by neglecting the inductance and the

capacity of the lines, and then briefly indicate how approximate

solutions may be obtained in other cases. In order to simplify the

problem as much as possible, let us consider first of all the efficiency

of a direct current two wire system.

Let P and P' be the terminals of the dynamo at the power

Direct current station (Fig. 198), and let D and D' be the terminals
distribution.

of the motor at tne distributing station. Let E and

E1 be the potential differences between the mains at the power
and distributing stations respectively. Let also C be the current

in each main and Rl the resistance of each main. By Ohm's law

we have

E-E^m^ (i),

and therefore EC = W+2R1C* (2),
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where W is the power received at the distributing station. Hence

we see from (2) that, for a given power W transmitted and for

given values of E and Rl} there are two possible values of C.

Since from (1) El equals EQR^C, there are also two possible

values of JEl . Solving the quadratic equation (2) for C we find

that
2

-8^Tr)*} ............ (3).

Now the electrical efficiency ?; of the transmission is given by

<rJ
= ElC/EC=l-2R 1C/E.................. (4),

and therefore, when R^ and E are constant, the smaller the value

of C the higher is the efficiency.

Fig. 198. Power Transmission Line.

From equation (3), since the quantity under the radical sign

must be real, we see that the maximum power that can be trans-

mitted is equal to E 2

/8R1 ,
and in this case the current equals

E/4>R1 and the efficiency is 50 per cent.

In general, if G^ and (72 are the two possible values of the

current for a given power W transmitted, and if % and ij2
are the

corresponding efficiencies, we have by (3), C1 + C2
=

(1/2) (E/RJ,

and hence by (4)

* + %=! (5).

If T/j
and 773 are not equal, one of them must be greater than 0*5.

Hence we conclude that the efficiency of the electrical transmission

of power over the lines in a direct current transmission plant need

never be less than fifty per cent.
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Let L be the self inductance of each main and let M be the

single phase
mutual inductance between the mains. Let also v

transmission. an(j ^ ^e faQ potentials of the terminals P and D
in Fig. 198, and let v' and vj be the potentials of P' and D'.

Neglecting the effects of electrostatic capacity, our equations are

-n T di ,. di
-.*-A+X

JB.-Jfjg l

, T-V . -r di Ttfdi
and -v +v1 =R1 i + L-J- M-J-.

at at

Hence e - e,
= 2R,i +2(L-M)^,at

where e and el are the instantaneous values of the P.D. at the

generating and distributing ends of the line respectively. We
thus get

ei = e,i + ZRi* + (L - M)^ ,

and taking mean values we have

VAcos^jr = W + 2RlA 2
.................. (6),

where cos
-\Jr

is the power factor of the load at the generating
station.

Solving the quadratic equation (6) for A we find that

^ = (l/4E1){Fcos^ + (F2 cos2 ^r-8E1 F)^} ...... (7),

and if cos ^ be the power factor at the distributing station,

77
= V1A cos ^/(FJ. cos ^)
= l-2R

lA/(Vcos^) ..................... (8),

by (6), noticing that W= F^ccs^.
From (7) we see that the maximum possible value of the power
transmitted is F 2 cos2

^/(SR^, and hence it is essential to make

cos
^|r

as large as possible. If T^J and 772 be the efficiencies of the

transmission for the two possible currents that can transmit a

power W for a given value of cos
i/r,

we have by (7)

id by (8)

We see therefore that, as in the case of direct current trans-

sion, the efficiency need never be less than fifty per cent. But

R. n. 29
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for small values of cos ty the power that can be transmitted is

very small.

Equation (6) may also be written in the form

Fcos ^ = F! cos -iTj +

Graphical
solution.

This suggests a graphical solution of the problem, and

to make our proof rigorous we shall suppose that the

electromotive forces and currents follow the harmonic law. Let

OA (Fig. 199) be the vector representing V, and let 00, CB, and

BA represent 2RiA, 2co(L M)A, and Vl respectively. The

angle -400 will be
-fr,

the angle ANC will be -v^, and the angle

005 will be a right angle. We shall denote the angle BOG by a,

so that tana equals w (L M)/Rl . Then projecting OAB on 00
we get

FCOS
T/r
- F! COS^ = 2^.4.

Fig. 199. V is the P.D. at the power station, and V
1
is the P.D. at the

distributing station. OC= 2R
1A, BC=2w(L-M)A.
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Similarly Fsin
-v/r

Vl sin fa = 2<w (L M) A.

Thus we find that

tan ^ =
{2a> (L

-M ) A + V, sin fa]1(2^A + Fx cos fa). -W-

If we denote the line 05 in Fig. 199 by 2Z . A we have

and F2 = F1

2 + 4 24 2 + 4F1^cos(^ 1 -a) .........(10).

If the power factor cos fa of the load equals cos a, then fa

equals a and cos
i/r

is equal to cos fa. If ^ is less than a, as, for

instance, when the load at the distributing station is non-inductive,

cos
i/r

is less than cos fa ,
and if fa is greater than a, cos ^r is

greater than cos fa.

When 2Z . A (OB in Fig. 199) is small compared with Fx we

have
F= F! + 2^J. cos (^ a) approximately.

Hence we see that for given values of F, A, and a, Fx diminishes

as fa increases from zero to a. When fa equals a, V1 has its

minimum value and Vl increases for greater values of fa.

When the constants of the line are given, equations (9) and

(10) enable us to find F and -^r for given values of Fx and fa.

If we suppose that the mains are short circuited at the dis-

The constants tributing station we see that 2 (L -M) is the self

of the line. inductance of the two wires in series. Hence, by
the formula given on p. 60 of Vol. I, we get

2(L-M) = l {0-00148 Iog10 (d/a) + 0'000161a} henrys,

where I is the distance between the power and the distributing

station in -statute miles, a the radius of each main, d the distance

between their axes, and a is a quantity which, for the frequencies

used in practice, may be taken equal to unity. If we are calculating,

however, the current produced by a high harmonic in the wave of

the applied P.D., a may be appreciably less than unity, and for

very high frequencies it may be taken equal to zero. In practice

the absolute value of a has in general very little effect on the

accuracy of the calculated value of L M.

Let us suppose that the two mains are each No. 1 S.W.G. The

diameter of each will be O'SOO inches, and the resistance per mile

292
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(Ri/l) is 0'64 ohms nearly, at 60 F. If we suppose that the

distance between the axes of the wires is 18 inches we get, by
the formula, on putting a equal to 1,

L-M= {0-00074 log (18/015) + O'OOOOS} I

= 0-00161

When the frequency <w/27r is 25, we have

a) (L - M)
= 0-25 1, and E, = 0'Q4>1

Hence since tax].oL = a)(L M)/R1 we find that a is 21'3 and the

impedance Z is 0'Q9l.

Let us now consider the case of transmission by three phase

Three phase
currents. Let vlt v2) and v3 be the potentials of the

transmission. three terminals of the line at the power station, and

Vi t v*> and VB

'
the potentials of the corresponding terminals at

P"

P' ia

Fig. 200. Three Phase Transmission Line.

the distributing station. Using the same notation as in the last

section and neglecting the electrostatic capacity we have

'
, r> . T dii , ^f dia , , di3

Vl = v1+R^ + L Tt+
M

Tt
+M

Tt
,

where il} i'2 ,
and i3 are the currents (Fig. 200) in the mains. We

have supposed that the mains are arranged symmetrically, so that

the mutual inductance between any two of them will be equal to

the mutual inductance between any other two. If there is no

fourth wire and no leakage of current back by the earth, we
must have

ii + 12 + 4 = 0,
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and thus

= ^ + R1i,+ (L-M)^l\ (11).

and vs = v3

' + R,i. + (L-M)

Now v^ + v2 io + v3 ia is the power Wg being given to the line at

the power station and #/% + #2% + ^s'4 is the power W received

at the distributing station (see Vol. I, Chap. xi). Hence, multi-

plying equations (11) by ilt iz ,
and is respectively, adding them

and taking mean values we get

Wg
= W+Ri(A? + Af + Af) ............ (12).

When the load is balanced

A 1
= A 2

= A s
= A

;
Wg

= \/3Fll2 A cos -f and W=*/fiV1*A cos fa,

where F1>2 and V^ are the potential differences between the

mains 1 and 2 at the generating and distributing stations re-

spectively. Hence

\/3F1 .2^cos^ = Tf+3E1^ 2
...............(13),

and F1>2 cos i|r
= F^' cos fa + V3^xA ............ (14).

Solving the equation (13) we find that

A =
{l/(2 V&RO} {

F1>2 cos ^ ( F1>2
2 cos2 ^ - ^Tf )*}. . .(15).

The efficiency TJ is given by

7? =Tf/Tf,= Tf/(Tf+3E 1^ 2

) ............... (16),

or 7
7 =l-\/3E1J./(F1 . 2 cos'f) ..................(17).

Also, if A! and A u be the two values of the current for which the

power W transmitted has a given value, and if
77! and 772 are the

corresponding efficiencies, we have

A l 4- A, = (1/V3) ( V^/RJ cos fa

and thus ^j + 77,
= 1. The efficiency of the transmission, there-

fore, need never be less than 50 per cent.

From (15), we see that the maximum value of the power trans-

mitted is F1>2
2 cos2

Tjr/^jRj). We have found that for a single phase

plant the maximum value of the power is F2 cos2

^/(8RJ. Thus
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by adding a third wire we have doubled the maximum amount of

power that can be transmitted to the distributing station. We
have assumed that the voltage between the lines and the power
factor is the same in the two cases. It should be noticed, however,

that the voltage between a three phase main arid earth is V^/^/3,

that is O'S^VFj.a, while the voltage between a single phase main

and earth need only be 0*5 F.

By subtracting the second from the first of the equations (11)

we get
Graphical ^
solution.

Vj .2 Vl<2

'

-f jRx (^
_ {2) + (L M) -j- (ij. ta).

Denoting the currents in the arms of the mesh load (Fig. 200) by
iX) iy ,

and iz respectively, we have

and therefore ^ i'2
= 2ig ix iy

= 34, if ix + fy + * = 0, that is, if

the load be symmetrical and the current waves in the arm's of the

mesh contain no harmonics of frequency 3 (2w + I)/. Hence

Assuming that the potential differences and the currents

follow the harmonic law, the diagram (Fig. 201) will represent

O NO
Fig. 201. F^ and F^' are the potential differences between the mains 1 and

2 at the generating and distributing stations respectively. OC gives the phase of

the current A' in the arm of the balanced mesh load joining 1 and 2.
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the effective values of the various quantities. We have tan a

equal to co (L M)/!^ and it may be shown that

tan ^ =
{Say (L

- M) A' + Fw'

sin ^j^R.A + F^' cos ^} . ..(18),

where ^ is the phase difference between F1>2 and the current ^4'

in the arm of the balanced mesh load at the distributing station

joining the mains 1 and 2, and ^ is the phase difference between

Fj.o' and A'. Since we suppose that the load is balanced and

neglect the electrostatic capacity of the mains, the current A' will

be equal to the current in the phase winding of the armature of

the generator which joins the terminals 2 and 1.

We also have

cos -

A cos (^ - a) . . .(19).

When V3. A (OB in Fig. 201) is small compared with F1>2 and

Fj.a' we have

Fw-F,V + V3&looB(^-a) ............ (20).

The siogle phase equation corresponding to (20) is

F= F! 4- 2^ cos (^ -
a).

Thus if we use two of the mains as a single phase system, and the

voltage drop is to be the same in the two cases, the current must

only equal V3-4/2. In this case the power transmitted for a given

voltage drop at the given power factor is (1/2) V3FA cos ^, that

is, one-half the power transmitted in the three phase case.

Let us now compare the efficiency of a single phase and a

three phase system when the same amount of copper
USed in the mainS in the tw CaS6S ' If ^ be the

with three resistance of each main in the single phase system,

then S.Rj/2 will be the resistance of each main in the

three phase system. Let the power W transmitted to the dis-

tributing station, the voltage between the mains, and the power
factor be the same in the two cases. Then if A 3 denote the

current in each of the three phase mains, and A^ the current in

each single phase main, we have

W= v
/3F1^ 3 cos^ = V.A, cos ^,

and therefore ^i
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The efficiency ^ of the single phase transmission is given by

and the efficiency 773 of the three phase transmission by

= W/[W+I'5R1A 1*}.

The efficiency is therefore higher in the three phase case. Also

the maximum power transmitted in the three phase case is

F2 cos2

T/r/{4 (3^/2)}, that is F2 cos2

^/(GRJ, which is equal to

four-thirds of the maximum power that the single phase line can

transmit.

Let us now consider the efficiency of star connected polyphase

systems, the voltage V to the centre of the star being
1

Comparison of * <

star connected the same in all cases. We shall suppose also that

they all use the same weight of copper in the mains.

Let there be q phases, and let qR be the resistance of each main,
so that the resistance of all the mains in parallel is R. Let W be

the power transmitted, and Jet A be the current in each main of

the q phase system and cos^ the power factor of the balanced

load. Then the ratio of the power lost to the power transmitted

=
q (qR) A*/(qVA cos ^) = qAR/Vcos^ = Tf^/(Fcos ^t)

2
.

The efficiency is therefore independent of the number of phases.
For a two wire direct current system this ratio equals WR/V2

.

Thus except when cos fa is unity the polyphase systems are less

economical, so far as transmission is concerned, than a direct

current system.

If the polyphase systems are mesh connected, and if the voltage
to earth be the same in all the systems, the problem

ofmesh
SOn

*s tne same as the one discussed in the preceding

systems
6 *1 section. The efficiency is therefore independent of

the number of phases. If we make the hypothesis

that the voltage V between consecutive mains is to be the same

in all cases, then, if the same weight of copper is also used, we find

that the ratio of the power lost to the power transmitted equals

q (qR) A*/[qVA cos fa/{2 sin (irfq)}]
= RW {2 sin (7r/q)Y/( Fcos ^)2

,

when q equals 3, = 3 W/(V cos fay,
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when q equals 4, = 2ETF/(Fcos

and when q equals 6,
= RW/(Vcos

Hence, as we might have anticipated from first principles, the

efficiency increases rapidly as we increase the number of phases.

To assume, however, that a constant P. D. between adjacent mains

gives a proper basis for comparing the relative merits of polyphase

systems is not justifiable. Let us consider, for instance, a six

phase system. In this case if the voltage to the centre of the star

load is F, the voltage between adjacent mains will also be F. But

the voltage between opposite mains is 2F. We should, therefore,

compare this system with a single phase system the voltage of

which is 2 F. Putting q equal to 2 and F equal to 2F in the

above formula, we get RW/(Vcos t^)
2 for the efficiency of the

single phase system whose voltage is 2 F, and thus the efficiencies

are the same in the two cases.

Let Wg be the power at the generating station, and let the

distribution be q phase. If W be the power trans-
Maximum
power trans- mitted and qR the resistance of each main, we
mitted by a

polyphase have

Wg=W -r q.qR.A 2
,

where A is the current in each main. Hence, if the load be

balanced

qV[A/{2 sin (ir/q)}] cos ^ = W + (fUA\
where cos

i//-
is the power factor of the load.

Solving this equation we get

A = [l/{4qR sin (ir/q)}] [
V cos ^ {

F2 cos2 ^-IQRW sin2

(ir/g)}*].

The maximum possible value of the power transmitted is

therefore [Fcosi|r/{sin (Tr/q)}]*/16R. Now it is easy to see that

F/{sin (tr/q)} is the maximum value of the effective voltage
between any two points on the armature windings, and hence if

we take this as the basis of comparison for different systems, the

maximum value of the power transmitted for a given weight of

copper is independent of the number of the phases.

Let us now consider the effects of electrostatic capacity on the

Distributed transmission of electrical power over a single phase
capacity. jjne> j^j, g^^ distances a concentric main may be
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employed, but for long distances two parallel overhead wires are

used. As the resistances of the mains are appreciable, we cannot

imitate the electrostatic effects by a single condenser, and thus,

we must imagine small condensers arranged at equal distances

apart all along the line (Fig. 202). Let k and s denote the

I
O' N' A' X'

Fig. 202. Model of single phase transmission line.

capacity and the insulation resistance between the mains per unit

length, and let r/2 be the resistance, and 1/2 the effective induc-

tance of each main per unit length. Now & is a constant and we

may assume also that s is constant. When the initial disturbance

that arises when the circuit is closed has died away, we may con-

sider that r and I are also constants. A maximum value for I is

obtained by making the assumption that the current is uniformly
distributed over the cross section of the mains, and a minimum
value by assuming that the current is entirely on the surface. In

the latter case r will be infinite unless we make the further

assumption that the conductivity is infinite. In the former case

r can easily be found. For bare overhead wires k can be calculated

by the formulae given in Chapters IV and v of Volume I, and

it can also be calculated for underground mains when the mean
dielectric coefficient of the insulating material is known. In the

case of concentric mains, k and s can generally be obtained from

the data given in manufacturers' catalogues. If a be the length
of a concentric main, the insulation resistance, s/a, between the

mains is given by
s/a

=
(o-/2?ra) loge fa/r^,

where rx is the outer radius of the inner main, r2 the inner radius

of the outer conductor, and tr the mean resistivity of the insulating

material in c.G.S. units. By Vol. I, p. 96, we have, in this case,
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where k' is in electrostatic units and \ is the dielectric coefficient.

We thus find that

k's = a\/4t7r.

We shall now find the differential equations which the current

and electromotive force have to satisfy at points on the trans-

mission mains of a two wire alternating current system, and, as

only a very elementary discussion can be given, we shall make the

assumption that we can consider r and I constant.

Let us suppose that the circuit is divided up into an infinite

number of little sections, similar to PNN'P' (Fig. 202), and let

PN be equal to dx. The capacity and insulation resistance

between PN and P'N' are kdx and sjdx respectively. The

resistance of PN and N'P' in series is rdx, and the effective in-

ductance due to the lines linked with the currents in PN and

N'P' is Idx. If e be the potential difference between P and P',

e + (dejdx) dx

will be the potential difference between N and N'. The difference

between these two pressures will be equal to the sum of the E.M.F.

rdx .i required to drive a current i through a resistance rdx and

the E.M.F. Idx.dijdt required to overcome the inductive E.M.F.

Putting this into symbols, we get

( ,

de , \ , . j, di
e (e + -=- dx = rdx . i + Idx . -j- ,

\ dx J dt

and therefore = ri + l^- .....................(21).dx dt

di
If i be the current at P, i + -=- dx is the current at N. The

dx

difference between these two currents will be the sum of the

leakage current edxjs, and the condenser current kdx . de/dt. We
therefore have

(

di , \ e 7 7 7 de
-;- dx} =-dx + kdx . -j- ,dx J s dt

di e , de
and hence _ = - + /<;-- .................. (22).dx s (tt

The values of e and i at points on the line, therefore, must satisfy

the differential equations (21) and (22). In addition, they must

satisfy the given initial and terminal conditions.
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In the general case the solution is complicated, but in the

special case when l/r equals ks, the equations can be
Circuit in r

(

which there is solved easily. In this case, the equation (21) can be
no distortion. . , ,,

written in the form

de I d

de 1/1 d \
7

.

or ___ = _ -+-=- ki .................. (23),dx v \r dtj

where r = l/r
= ks, and v = 1/V7&.

Similarly (22) becomes

.................. (24).dx ^
v \r dt

We saw in Volume I (p. 141), that

where 1 is the inductance of the line per unit length when the

resistivity of the metal forming the line is zero, and k' is the

capacity of the line per unit length in electrostatic measure. We
saw also (Vol. I, p. 96) that k

r

equals k (3 . 1010
)
2
,
and hence we

find that 3 . 10 10 =
l/^lje. In practice, neither the conductivity of

the wire nor the frequency of the alternating current is infinite
;

the current therefore is not wholly on the surface, and so I must

be greater than 1 . It follows that the maximum possible value of

the quantity v in equations (23) and (24) is the velocity of light,

that is, 3 . 10 10 cms. per second.

Let us suppose, for instance, that we have two parallel cylin-

drical solid wires each of radius a, and that d is the distance

between their axes. For low frequencies, we have

v = 3 . 10 10

[{4 log (d + Vd2 -4a2

)/(2a)}/{4 loge (d/a) + 1}]
1/2

(see Vol. I, pp. 60 and 141). This equation shows us that v is

practically equal to 3 . 1010 when d is large compared with a, and

that v is very small when the wires are nearly touching. If d were

equal to 10a, we would have v = 2*84 . 1010
.

By adding together the equations (23) and (24) we find that
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and therefore -7- (e + hi)
tlr + v -r- (e + ivi) et/T = 0.

dt cLx

The solution of this equation is

(e + lvi)e
tlT = F1 (a;-vt) (25),

where F^ (x) is the function of x which gives the value of e 4- Ivi at

all points on the main when t is zero.

This solution may be verified at once by differentiation.

Similarly by subtracting equation (23) from (24), and proceeding
as before, we get

(e-lvi)e^ = F2 (x + vt) (26).

By adding (25) and (26) we get

2e = e-^ Fl (x
-

vt) + e~</TF2 (x + vt) (27).

Also, by subtracting (26) from (25), we find that

2lvi = e~^Fl (x
-

vt)
- 6-'TF2 (x + vt) (28).

If we suppose that the origin is moving along the main to the

right with a velocity v, then, at the time t, the value of e + Ivi is

given by e~t/TF (x), where x is the distance of a point on the main

from the moving origin. If, therefore, the mains are infinitely long

and if their conductivity is perfect, the initial value of e + Ivi,

which is represented by Fl (x), glides bodily to the right with the

velocity of light. If the conductivity of the mains is not perfect,

that is, if T is not infinite, e + Ivi glides to the right with a velocity

less than that of light, and with continually diminishing ampli-

tude. The distribution in space, however, of e + Ivi is always

similar to its initial value. The wave thus suffers no distortion

although it may be rapidly dying away.

Equation (27) shows us that the electromotive force wave, and

therefore also the distribution of the electrostatic charges along

the main, may be regarded as due to the motion of two waves,

moving in opposite directions with velocities less than the velocity

of light. For instance, suppose that initially one metre of the

positive main has a charge of one microcoulomb uniformly dis-

tributed over it, and that a metre of the negative main, exactly

opposite to it, has a negative charge of one microcoulomb. Let us

suppose also that initially all the remaining part of the mains

is at zero potential. We see by (27) that the positive charge
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(Fig. 203) separates into two equal charges. One half moves to the

right and one half to the left with velocity v, and the shape of the

wave being a rectangle initially,, each of these waves is rectangular.

-1 r

t

II.

-H. <H 1 1 h*
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Equations (26) and (25) show that e Ivi is a negative wave,

that is, one which moves to the left, and e + Ivi is a
Positive and
negative positive wave, that is, one which moves to the right.

We have supposed that the mains are of infinite

length, so that there are no reflections or other interferences. If

e equals Ivi, there is a positive wave only. We may say, there-

fore, that e equal to Ivi is the characteristic property of a positive

wave. In this type of wave we see by (25) that

2e = e~e/TFl (x
-

vt), and i = e/lv
= kve.

Since ke denotes the charge on the positive main per unit

length, we see that this charge multiplied by the velocity v is

equal to the current i. In a positive wave we have

(1/2) ft* = (1/2) flfeW = (1/2) ke\

that is, the electromagnetic energy at any instant equals the elec-

trostatic energy. We also have riz

=e^js, which shows that the

energy expended in heating the mains equals the energy expended
in leakage currents.

Since the equations e=lvi and e lm express the characteristic

properties of positive and negative waves respectively, it follows that

e and i have the same sign in a positive wave but opposite signs
in a negative wave. In both kinds of waves the electromagnetic

energy at any instant equals the electrostatic energy. When two

waves travelling in opposite directions meet, the resultant e is

obtained by adding the values of e for each wave together, and

the resultant i is obtained by adding the values of i for each

wave. If the positive and negative waves are exactly equal and

similar, then, at the instant when they are superposed, e is doubled

and i is zero
; but, if the electrifications are opposite e is zero and

i is doubled. In the first case the energy is all electrostatic, and

in the second case it is all electromagnetic. It is to be noticed

that the waves pass through one another without producing any

interference, the attenuation of each wave during the overlapping,

proceeding at exactly the same rate as if the other were absent.

When the length of the mains is finite, the terminal conditions

The reflection
^n ^e ideal case we are investigating can be found

andtransmis- without difficulty. If one pair of the ends of the
sion of waves. . . . 7 . . ,

mains be on open circuit, the incident wave e + Ivi
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must give rise to a reflected wave e Ivi, since there can be no

currents at the ends. If they be connected together through a

non-inductive resistance R, there will be a reflected wave e Ivi',

and the current in the bridge i + i' will be equal to (e -f e')/R.

Since e = Ivi, and e = Ivi', we have, therefore,

and thus e'/e
= (R- lv)/(R + lv\

and i'/i
= -(R- lv)/(R + Iv).

In proving the above equations, first given by 0. Heaviside,

we have assumed that the disturbance of the electrostatic and

electromagnetic lines by the charges on, and the current in, the

terminal bridge is negligible. When R is large this is very

approximately true, but when R is small, there will obviously be

a considerable departure, near the end of the line, from the normal

conditions. In the latter case, therefore, the solution will be only

approximate.
When R is greater than Iv, e is less than e, and the reflected

wave is less than the incident wave. When R equals Iv, both e'

and i' are zero. In this case, therefore, there is no reflected wave,

the incident wave being completely absorbed, the energy of the

wave, (ke^/Z + Zi
2

/2) a' = Ivi* a'/v, being converted into heat in the

connecting resistance Iv. We have supposed that a! is the length

of the wave. When R is less than Iv, e is negative and i' is

positive, and we have a recedent wave, the electrification being

reversed. Finally, when R is zero, the recedent wave equals the

incident wave in magnitude, the charges (Fig. 203) on the two

mains simply changing places at the far end of the line and main-

taining their constant velocity v round the circuit. The positive

charge thus goes through the negative charge without having the

slightest effect on it. They obviously cannot neutralise one

another as this would have the effect of destroying the electro-

static, and the electromagnetic energy of the system.

It is to be noticed that in the preceding discussion we have

considered the case of a circuit with uniform leakage

for normal of such a value that the distortion of the wave which

otherwise always occurs is neutralised exactly. We
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are thus enabled from elementary considerations, as Heaviside

pointed out, to form some conception of what happens in a

circuit before the normal condition of working is established.

We shall now find the solution for the normal working in a dis-

tortionless circuit subjected to a periodic impressed E.M.F., when

the ends are joined through a non-inductive resistance R. For

this purpose it is often more convenient to write the solutions (27)

and (28) in the following form :

2e = e-tlr F, (x
-

vt) + 6-^F2 (x + vt)

= 6~XIVT e (x~vt]IVT Fl (x
-

vt) + e
x!VT e- {x+vv /vrF2 (x + vt)

= <r^Mrt-*)+<#f*(vt+x) ........................(29),

and similarly, we can write

Zlvi = e-xiVTfl (vt-x)-ex!*r
ft(vt + x) ........................ (30).

Let us suppose that the distance between the power and the

distributing stations is a, and let the terminals at the distributing

station be joined through a non-inductive resistance R. In the

general case, e and i have to satisfy equations (21) and (22), and,

in addition, the pressure at the power station must be equal to

Ri. When l/r
= ks = r, it is easy to verify that the solutions

+ \(R- vl)/(R + vl)} e<*-wf (vt + x-a)
and 2lvi = 6- {x

-a}/VT
f(vt

- x + a)
-
{(R

-
vl)l(R + vl)} e (x

~
a]^f(vt + x-a)

satisfy the condition e = Ri, when x is equal to a. They are

therefore the solutions appropriate to our problem.

The voltage e at the power station is given by

2e - e
alvr

f(vt + a) + {(R
-

vl)/(R + vl)}
~a
^f(vt - a) . . .(31),

and hence if e is an alternating periodic function so also will be

f(vt). If el
be the voltage at the distributing station, where x

equals a, we have

and thus the square root of the mean square value of f(vt) is

Vl (R + vl)l(R), where Vl denotes the effective value of ^. Hence,

from (31), we have

F 2 = {(R + vl)/2R}* V* [e* + {(R
-

vl)/(R + vl)}
9 e-***

+ 2 {(R
-

vl)/(R + vl)} cos a] ...... (32),

R. ii. 30
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where a is the phase difference between f(vt a) and f(vt + a).

This equation can also be written in the form

Fo/ F!
=

{2 (E
2 + vW) cosh (2a/vr) + 4Rvl sinh (2a/tn-)

+ 2 (E
2 -^2

) cos }V(2J?) (33).

Similarly we can show that

AO/A! = {2 (E
2 + vH2

) cosh (2a/trr) 4- *Rvl sinh (2a/trr)

- 2 (E
2 - W2

) cos a}*/(2fo) (34).

In practice, flT is generally very great compared with a. For

instance, if the frequency be 25, T will be 1/25, and even, if v be

as small as 100,000 miles per second, vT will be 4000 miles.

Hence, for distances up to about a hundred miles, we can write

1 for cos a, without introducing an appreciable error. Making
this assumption equations (33) and (34) become

FO/FJ = {cosh
2

(a/vr) + (vl/Ky sinh 2

(a/vr)

+ (vl/R) sinh (2a/w-r)}*

= cosh (a/vr) + (vl/R) sinh (a/wr),

and AQ/A! = (R/vl) sinh (a/vr) + cosh (a/vr).

We can show in a similar manner that, if the voltage and the

current at a point on the line at a distance x from the power

station be V and A,

VI F! = cosh {(a
-

x)/vr} + (vl/R) sinh {(a
-

x)/vr} (35),

and A/A, = (R/vl) sinh {(a
-

x)/vr\ + cosh {(a
-

x)/vr] (36).

If, in addition, a/vr be small, as it generally is in practice, we

have

F/F = {Rr + I (a
-

x)}l(Rr + la),

and A/A* ={R(a-x) + v*lr}/(Ra + vHr).

We shall now discuss the case when ks is not equal to l/r.

In practice s is very large, and so, without affecting
Mains of

, -,

infinite the practical value of the solution, we may suppose

that it is infinite. Owing, however, to the complexity

of the formulae in the general case, we shall assume, first of

all, that the mains are of infinite length. The differential equa-

tions (21) and (22), which e and i have to satisfy, now become

de .
j
di ,-.- = m + l (37),

dx dt
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di , de
and -~ = k -TT ........................... (38).dx dt

Eliminating e from the equations, we find that

<fti di . . d2
i

Similarly, by eliminating i, we obtain

d*e , de

Let us suppose that at the point where x is zero the mains are

maintained at a potential difference E sin at. If

Eemx sin (tot + nx)

be a solution of equation (40), the constants m and n must satisfy

certain conditions. These conditions can be found by substituting
the assumed solution in (40), and equating the coefficients of

sin (cot + nx) on the two sides of the equation, and equating also,

in a similar manner, the coefficients of cos (cot -f nx).

We have,

d2 / d \
2

Ee
mx sin ^t + nx) = Eemx ( -j-

t

-|- m
J

sin (cot + nx),

and therefore

' d2e

-j-z
= (m

2 n2

) Ee
mx sin (cot + nx) + 2mn Eemx cos (cot + nx).

We have, also,

de d~6
kr -T- + kl

-j-j
= krco Eemx cos (cot + nx)

- klco* Eemx sin (cot + nx).
ct/t dt

Equating, therefore, the corresponding coefficients of

sin (cot + nx) and cos (cot + ??#),

we find that

and 2mn = krco.

Solving these equations for m and n, we find that

2m2 = cok(z- lco)\ (

and 2?i
2 = cok (z + lco)\

"

where ^2 = r'
2 + /

2
o>

2
,

30
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and we have prefixed the positive sign to z, as we have supposed
that m is a real quantity. We can easily show that if m were

positive, the power per unit length, ri2
, expended in heating the

mains would be infinite when x is infinite, and therefore positive

values of m are inadmissible. Since 2mft is a positive quantity,

n must also be negative. The solution of equation (40) is,

therefore,

sn w

where m1
= 4- *Jka> (z

-
lco)/2 and nl

= + \ik(o (z + &>)/2. . .(42).

Since we have supposed that the line is infinitely long, there

are no reflected waves or other interferences, and thus the above

solution is the complete solution.

We see that the amplitude of the P.D. between the mains

diminishes according to the logarithmic law as we move away
from the power station. The phase difference between the P.D. at

a point and the P.D. at the power station gradually increases the

farther we get from the power station. We also see that the P.D.

at a point whose abscissa is x attains a maximum value when

a)t equals n^x + 7r/2 ;
the waves of P.D., therefore, travel along the

mains with a velocity &>/rii>
that is, V2&J/& (z + lw). When r is

small compared with Ico, this velocity equals l/*Jlk approximately

and, when the radius of either main is small compared with the

distance between them, this is approximately equal to the velocity

of light.

By equation (38), we have

_ di _ , de

dx dt

cos (wt n^x),

and thus, - i = kwEe~m^
\
1

/(-=
-- ml } [

cos (wt
-

n^x),
( I \dx J)

and therefore, i = \lkwjz Ee~~ iX sin (wt n-^x + a^,

where tan ctj
=

m^n-^ rj(z + lw).

Thus at any point in the main the phase of the current is in

advance of the phase of the P.D. At the point x, for instance, the

current is the same as if the main from x to infinity were replaced
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by a non-inductive resistance Rl in series with a condenser Kl}

where

7^ = *Jzjkw cos !, and l/Ti^
= o> \l~zjka) sin o^.

When the applied wave of P.D. at the origin is not sine shaped,

The distortion then the shape of the wave of P.D. changes as x

rfRiXand* increases. For if the applied wave of P.D., at x
current.

equal to zero, be given by

e = E1 sin (cot
- &) + E3 sin (Sort

-
/38) + . . .

,

the values of e and i at x will be given by

e = Ei<r
m& sin (o>

- w^ - ft) + E3e~
m*x sin (3o>

-v -
/33) + . . .

and i = A/&o>/ E^- 1
* sin (&>

- w^ - A + c^)

- n3# - ft + as) + . . .
,

where zs vV2 + 91W ;
m3
= VSAjw (03 3/&>)/2 ;

etc.

We see that the shapes of the voltage and current waves are,

in general, different at all points of the transmission line, even

when there are no reflected waves. We see also that the higher

the order of the harmonic wave the greater is the speed with

which it travels.

We shall now consider the case when the length of the mains

is finite. Let us suppose that when x is zero, that
Single phase
mains on open is at the power station, the P.D. between the mains

is always maintained equal to E sin wt, and that at

the distributing station, where x equals a, the mains are on open
circuit. Since i must be zero at the terminals of the mains, and

must satisfy equation (39) for all values of x and t
t
it is given by

i = I'
{e

TOl (a
~

x) sin (cot + y + n: a - x)- e~mi (a
~

x} sin (wt + y r^a as)}

...... (43),

where I' and 7 are constants. When x is equal to a, we see that

i is always zero.

Now from (38),

de _ 1 di

dt k dx

I'_ emi (a-x) I raj SHI(+ 7 + 7^0, -#)+...,
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and therefore

T
e = emi(*-x) [_ m

)
Cos(a>^ + 7 + n1a a?) + ...

&ft> Kcte /

= = e 1 fc*-*) Vw!2 +V sin ( cot + 7 + fij a a? - a)
/&)

+ ^ e~mi (a-a;) Vm, 2 + ft,
2 sin (&> + v nl a x a\

fCCi)

where tana = 7?i 1/7i1
.

We have, therefore,

e = 2I' "Jz/kco cosh ml (a so) cos rij (a a;) sin (wt + 7 a)

+ 2/' *Jz/kco sinh raj (a #) sin n^ (a x) cos (wt + 7 a),

= ^ sin (o)^ + 7 a + /3),

where tan /3
= tanh m1 (a x) tan n^a x) (44),

and E2 = (%I'
2

z/k(o) {cosh 2?% (a x) + cos 2^ (ct a?)}.

Now when x equals 0, E equals E9t and 7 a-\-/3 equals zero.

We have, therefore,

E<? = (2I
/2

z/ko)) {cosh 2mja + cos 2n1a},

and 7 = a tan"1

(tanh m^ tan WjCi)

Thus the value of e at the point on the line, whose abscissa

is x, is given by

e = EQ [{cosh 2mx (a x} + cos 2^ (a #))/{cosh Zm^a + cos 2ia}]*

x sin (art + -
ft) (45),

where /3 is given by (44). From (43) also, we have

i = EQ \ik(0/z [{cosh 2m 1(a-#)-cos2ft1(a-#)J/{cosh 2m1a+cos2w1 }]*

x sin(&)^ + 7 + S) (46),

where tan S = tan n^ (a #)/tanh ml (a x). The complete solu-

tion of the problem in this case is given, therefore, by (45)

and (46).

The effective values of the voltage V and the current A at the

point whose abscissa is x are given by
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F = F [{cosh 2m, (a
-

x)+ cos 2n a (a
-

x)}/{cosh 2raja + cos 2/^a}]*

...... (47),

and

...... (48).

If R, K and Z be the resistance, the capacity and the induct-

ance of the whole main, we can find m1 and n t [see (42)] by the

equations

2 (mjaf = a)K (R* + Z 2
o>

2
)*
- Z/fft>2 =

(o>a/i;)
2

{(1 + R^jL^ -
1},

and 2
(?i 1a)

2 = wJf (E
2 + Z2 2

)* + ZJfo>
2 =

(a>a/v)
2

{(1 + jR2

/Z
2
a>

2

)* 4-1},

where v = ~L/\/lk. If JV be the length of the line in kilometres,

and / the frequency, while v equals 3 . 1010
,
we have

Hence, except in the case of high harmonics, wa/v will be a small

fraction, if N be small. Also since R/Lco is practically always
less than 10 for overhead mains, we see that Zm^a and 2^a are

usually small fractions. Hence, from (47), we see that the

effective value of the voltage is approximately constant along the

line when it is only a few kilometres long.

If Vl be the voltage at the distributing station, where x = a,

we have by (47),

V1
= F V2/(cosh 2mxa + cos 2^)* ............ (49).

In some cases cosh 2mxa + cos 2nja is less than 2, and the

voltage Vl at the end of the line is then greater than the applied

voltage F . It is to be noticed that, when n^a is small, cos 2n^
diminishes more rapidly than cosh 2m^ increases, as a increases

;

for ??! is always greater than mlt and so n^ sin ^n^a is greater than

m1 sinh2m 1a. The value of a that makes cosh 2/^a + cos 2nxa

a minimum is given by the smallest positive root, other than zero,

of the equation

rax sinh 2m,a = Wj sin ZH&.

This equation can easily be solved graphically.

Suppose, for instance, that 2wx is 3, and 2mx is 1. In this

case the value of a which makes the voltage at the distributing

station a maximum is a root of the equation sinh x = 3 sin 3#. In
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Fig. 204. The value of x (0-93) at the point where the curves OAP (y = 3 sin 3x)

and OBP (y
= 8inhx) intersect makes the ordinate of the curve ABC (Fig. 205) a

minimum.

Fig. 204, OAP is the curve y = 3 sin 3#, and OBP is the curve

y = sinh x. The abscissa of the point of intersection of these curves

satisfies the equation sinh x = 3 sin 3#, and it therefore makes

cosh x 4- cos 3#

a minimum. In this case the value of x is nearly 0*93 and

cosh x + cos 3%

is then equal to 0'5 nearly. Thus for this value of a the voltage

at the far end of the line would be equal to twice the voltage

at the generating station, for the given values of the line

constants.

In Fig. 205 the curve ABC represents the equation

yj'3
= cosh x + cos 3#.

It will be seen that after attaining a minimum value, y rapidly

increases.

If the value of 2nxa be very small, as it is in many important

practical cases, we get from (45) the following approximate

equations, noticing that B ra^a2 =
(krco/2) a

2
, etc.,

- #2 sn

Q sin cot,
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Fig. 205. The curve ABC(y = 3cos3x + 3 cosh x) is got by adding together the

ordinates of the curves PMN (y= 3 cos 3a;) and PQE (y = Bcoshx). The length of

the minimum ordinate of ABC is 1*5.

and (46) gives the approximate equations

i = EQ ^kco/z Vtfv* + n^ (a
-

x) sin
(

wt + y + tan"1

]
V Wly

C7T
\

cot +
-^

m^a? }

= E k(0 (a x) cos a)t.

Hence, in many cases, when the applied wave is sine shaped, we

can use the following equation for the current at any point on

the line on open circuit,

A = toKV (I-a;/a),

where K is the capacity between the mains. The effective voltage,

also, between the mains, is practically the same at all points of the

line. The loss in heating one of the mains is given by

(1-^/a)
2 dx

where R is the total resistance of the main.
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Now a)KV is the current at the generating end of the line,

that is, the charging current. Hence to find the loss of power in

the line on open circuit due to its resistance we multiply the

square of the charging current by one-third of the resistance of

the mains.

The losses in single phase transmission lines and the voltage

Graphical
at ^he distributing station are generally calculated

methods. as follows. The electrostatic capacity K between

the mains is calculated by the formulae given in Chapters IV and

V of Vol. I. It is then assumed that the mains themselves have

no capacity but are connected by a condenser of capacity K at

a point the distance of which from the generating station equals
one-third of the total length of the line. This simplified problem
is then solved graphically. It will be seen from the preceding

paragraph that if we can neglect the voltage drop along the

mains, this arrangement will give the same open circuit losses as

the actual mains do. Engineers in making calculations in con-

nection with transmission lines often make the above assumption,
but if the voltage between the lines is not approximately constant

at all points the assumption is not permissible.

When considering three phase lines the following artifice

may be employed in making rough calculations. Equivalent con-

densers as in Vol. I, Figs. 34 or 39, may be supposed placed between

the mains, at a distance from the generating station equal to

one-third the length of the line, and we can make calculations

on the assumption that the mains have no capacity, employing
the graphical methods explained at the beginning of the chapter.

A discussion by this method, although the results obtained are

only roughly approximate, is sometimes useful to the engineer,

as it gives him a good idea of the relative effects of resistance,

inductance and capacity in his circuits. When, however, the

greatest accuracy is necessary the analytical methods explained

above must be used.

When the potential difference between the mains is very high,

The electric each main is seen surrounded by a faintly luminous

tweerfshSe enveloping cloud of a bluish colour, which apparently
phase mains. does not touch the conductor it envelopes. This
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cloud is called the corona. The air inside this corona has broken

down and become a conductor. Hence the boundaries of the

Faraday tubes are altered and we cannot apply formulae found

on the assumption that the distribution of the tubes is the same

as that for low pressures. When coronae make their appearance
it is found that the capacity between the mains and the loss of

energy in distribution are increased.

As the pressure between the mains is increased, short violet

streamers are seen issuing outwards from the corona, the space

immediately outside the corona being the seat of great electrical

activity. At higher pressures the streamers are longer and a

hissing noise is heard. When the potential difference between

the electrodes approaches the disruptive value sparks take place

between the mains. Finally the air gets broken down at some

point and an arc is established. In practical work we can assume

that the dielectric strength of air under normal atmospheric
conditions is 38 kilovolts per centimetre. The method of calcula-

ting the pressure at which coronae appear is described in a paper

by the author (Phil. Mag. [6], Vol. 11, p. 259, 1906).

In Vol. I, p. 67, it is shown that the effective value of a

Poiycyciic complex current, that is, of a current which is the
distribution. resultant of a direct current C and an alternating

current i is V(7 2 + A 2
,
where A is the effective value of i. Hence,

if R be the resistance of the main in which the complex
current is flowing, the heating effect will be RC 2 + RA~. Each

current, therefore, produces the same heating effect that it

would produce if flowing singly. If G equals A, the heating effect

will be only 2RC 2
,
instead of 4RC 2

,
which would be its value if

the currents were of. the same kind. This theorem has been

utilised in practice for the purpose of transmitting direct and

alternating currents by the same mains, and thus effecting a

saving in the weight of copper required.

We may show as follows that if two currents of different

frequencies are flowing in the conductor, the mean value of the

power expended in heating it is practically the same as if the

values of the power expended by each, acting singly, were added.
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Let/i and/a be the frequencies of the two currents, and, with our

usual notation, let

i = /! sin 2-Tr/itf + 72 sin (27r/2 a).

Taking the mean value of i? over a period T which we suppose

to be exactly divisible by l//x and l//2 ,
we get

Even if T be not a multiple of 1//J and l//2 , yet by supposing

it sufficiently large we may make the error in assuming that

Af + A = A 2 less than any assignable magnitude.

In practice, when an alternating supply is required for power

Dykes' purposes, the best results are attained at very
system.

JQW frequencieSe On the other hand, for lighting,

the frequency should be greater than 30. It is sometimes de-

sirable, therefore, to supply current at two different frequencies,

and several engineers have devised systems of doing this in which

the alternating currents flow along the same mains over parts of

Line- Wires

Secondaries

Singlt-Phait Primaries

Fig. 206. Dykes' polycyclic transformers.

their circuits. In the system invented by F. J. Dykes a four-core

transformer is used (Fig. 206). By its means two distinct cur-

rents of different frequencies are sent over the same three phase

lines.

It will be seen from the figure that the windings are so

arranged that the fluxes due to the currents in the three phase

and single phase primary windings induce electromotive forces in

the secondary windings. The single phase flux, however, has no
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effect on the three phase E.M.F., and the flux due to the three phase
currents has no effect on the single phase E.M.F. The only function

of the fourth core is to provide a return path for the single phase flux.

The three phase windings are connected in star, and the common

junction is insulated, and so (Chapter x) there are no third

harmonics in the three phase currents, and the magnetomotive
force in the fourth core due to them is zero. The single phase

primary windings consist of three equal coils connected in series,

and therefore the three fluxes induced in them are in the same

direction in space at the same instant and the return path is by
the fourth core. The secondary windings for both the three phase
and single phase currents are similar to the primary windings,
but in the three phase windings the common junction is con-

nected with a fourth wire or with the earth.

The transformer at the distributing station is exactly similar

to the transformer at the power station. Let us now suppose
that the terminals of a three phase machine are connected with

the three phase windings of the transformer at the power station.

Since there are no third harmonics in the magnetising currents, the

transformer will act like an ordinary three phase transformer, and

if balanced three phase currents be taken from the secondary of

the distributing transformer, the fourth wire will be inoperative.

The algebraic sum of the three fluxes at any instant will be zero,

and no effects will be produced in the single phase windings.

Let us now consider the effect of applying an E.M.F. to the

single phase primary winding. If we assume that the reluctances

of the magnetic circuits linked with the three primary coils are

equal and that there is no magnetic leakage, the potential differ-

ences induced between each of the three phase wires and the

fourth wire will all be equal, and thus the single phase currents in

the three phase wires will all be in phase and will return by the

fourth wire. On the other hand the potential difference between

any two of the three phase wires due to the single phase flux will

be zero, as the fluxes in the two limbs of the transformer will

generate equal electromotive forces in the two coils wound on

them and the resultant E.M.F. therefore round the circuit of the

two wires will be zero.

In actual transformers the reluctances of the three magnetic
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circuits linked with the three primary coils are never exactly

equal, and thus, if the secondaries are on open circuit, the voltages

between their terminals will be different. In one case F. J. Dykes
found that the secondary voltages on open circuit were 85, 10

and 5 respectively. On connecting up, however, the secondary

terminals with the transmission lines, the voltages became equal.

The balance is obtained by the mutual actions of the two trans-

formers on one another, and the required circulating currents flow-

ing in the mains were found to be small.

In this system (Fig. 206) the three phase currents at any

point can be obtained by tapping the three phase lines and using
an ordinary three phase transformer. If single phase currents, or

if both kinds of current are required, we can use a transformer of

the type shown in the figure. The primary coils of this trans-

former must be four wire star connected, and the single phase
current is got from three secondaries in series.

When a transformer is supplied in this manner with currents

of different frequencies, a curious effect is produced by the periodic

coincidence of the maximum magnetic fluxes due to the two types

of current. This effect can be heard in the hum of the trans-

former, distinct
' beats

'

being produced. It can also be felt by
the hand, as molecular vibration is produced in the iron.

Another system of utilising three phase mains to carry single

Arnold's phase current of double the frequency for lighting
system.

purposes has been proposed by Arnold, Bragstad
and la Cour. In Fig. 207, 0' is the neutral point of the armature

Fig. 207. Three phase polycyclic system of distribution. G
l
and G3

are single

and three phase generators. M3 is a three phase motor, and L represents the single

phase lighting load.
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windings of the three phase motor. The generator Gs is an ordi-

nary three phase machine, but its frequency is only half that of the

single phase machine GI which supplies the lighting load at L.

The higher frequency current returns by the mains X, Y and Z,

and thus economies are effected as the copper required is less

than when separate mains are used.

A polycyclic system suitable for the distribution of power for

motive purposes by two phase currents, and for the distribution

of power for lighting by single phase currents, is shown in Fig. 208.

Fig. 208. Two phase polycyclic system of distribution. AB and CD are the

armature windings of a two phase generator, and A'B' and C'D' are the armature

windings of a two phase motor. G
1
is a single phase machine of higher frequency

for the lamp load.

and Ol are the central points of the two separate windings on the

armature of the generator, and 0' and O/ are the corresponding

points on the motor armature. and : are connected with the

terminals of the single phase machine, and 0' and O/ with the

lighting load. When two phase transformers are used to raise

the pressure, the single phase machine and the lighting load are

connected through transformers with the middle points of the

windings on the high tension secondaries of the two phase

transformers.

In order to avoid the large inductive drop in the voltage, due

to the windings of the polyphase armatures or transformers which
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Fig. 209. Connections of the windings of a polyphase armature so as to

avoid appreciable inductive drop in the single phase voltage.

the high frequency single phase currents have to traverse, bifilar

windings are used, the principle of which will be understood from

Fig. 209. The arrowheads show the directions of the superposed
currents.

The single phase and three phase generators may be com-

Poiycyciic bined into a single machine (Fig. 210). In the

polycyclic generator shown in this figure, the field

poles N, S, JV,... produce ordinary three phase currents in the

Fig. 210. Polycyclic generator with rotating field poles. JV, S,... field poles

producing ordinary three phase currents in the armature windings, which, when

the system is balanced, have no component along 00'. n, s, n... field poles pro-

ducing single phase currents of three times the frequency, which are superposed on

the three phase currents and flow along 00'. The double arrowheads show the

directions of flow of the high frequency single phase currents. The single arrow-

heads apply to the three phase currents.
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armature windings which, when the system is balanced, have no

component along 00'. The field poles n, s, n,... produce single

phase currents of three times the frequency. These, which are

represented by the double arrowheads, are superposed on the

three phase currents represented by the single arrowheads. They
are obviously in phase with one another, and will therefore flow

along 00'. We have supposed that the poles rotate and that the

loads are non-inductive. It will be seen that the portion of the

armature windings between the single phase and three phase

fields is inoperative, as it is necessary to have the magnetic

fields of the two sets of poles quite distinct from one another.

The winding of the machine, however, is simple.

In the above method all the single phase current has to pass

through the armature coils of the three phase machine, and so

special windings have to be used which are non-inductive with

respect to the single phase current. By Dykes' method the same

end can be attained more cheaply, since standard generators can

be used and no special apparatus is required except the compara-

tively inexpensive transformers.
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wave winding, 6
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Guilbert's formulae, 47, 76
method of finding, 434
of converters, 422, 427, 432
of synchronous motors, 137
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three phase, 76

Arno starting device, 378
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motors, 327 et seq.
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transformer, 258
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Bipolar alternator, 132

diagram, 157

synchronous motor, 133

Biquadratic equation, roots of, 186

Blondel, Andre",

bipolar diagram, 157
method of analysing waves, 112

principle of two reactions, 34, 137
tests of three phase machine, 91
tests of two phase machine, 100

Boosting transformer, 282

Booster, 286

negative, 283

Bragstad, polycyclic system, 478
Brake test of motor, 172

Caffaro, generator, 106
Cambrai Sugar Refinery, 366

Capacity, distributed, 457

Cascade, induction motors in, 368 et seq.
Characteristic curves, general equation

to load, 58
on wattless loads, 55

open circuit, 23
short circuit, 29, 54

theoretical, 61
three phase, 90, 92
two phase, 101

Charing Cross Works, synchronous
motor generators in, 176
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208

the whirling of shafts, 209
Circle diagram, transformer, 229

induction motor, 347, 352
commutator motor, 406

Circuit breakers, 196

Circulating current, in a three phase
armature, 70

in a two phase armature, 79

Coefficients, self and mutual, of in-

duction motor, 334, 341, 342
Commutator motors, 398 et seq.

direct current series, 407
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Commutator motors (continued)
formulae for, 403

Heyland, 371

repulsion, 410

series, 399

shunt, 409

simple induction, 413

Compensating ampere turns, 39 et seq.

Compensator, 289

Compounding of rotary converters, 435

Condenser load, effect on parallel

running, 200

Condenser, rotary, 164*

Converter, rotary, 416 et seq.

compounding a, 435
data of a, 440

heating of, 420

inverted, 440

multipolar, 427

parallel running, 439

polyphase, 425

single phase, 417

starting of, 439

voltage ratio, 418, 426, 431

Copper strip for field magnet windings, 4

Core losses in transformers, 254, 308
Coronae round mains, 474
Current direction indicator, 293
Current vector of generator and syn-

chronous motor, 141

Damping coils, 191

theory of, 192

Danielson, E., 370

Demagnetising effect of lagging armature

currents, 34 et seq.
Direct current machines, 2

Discriminating transformer, 293
Disk armature, 6

Distortionless circuit, 461, 485

Distortion, of p.d. wave, 88
of current wave, 94 et seq.
with polyphase transformer, 271 et seq.

Distributed capacity, 457

Dobrowolsky, 328
Double current generators, 441

armature reaction, 445

heating of armature, 444

Dunkerley, 209

Dykes, F. J., shape of current and dis-

tortion of wave shape, 272
E.M.F. wave in transformer, 251, 253

polycyclic system, 476

Dynamo-electric machines, 1

Earth connection, effect on wave shape
of, 271

Eddy current losses in the core of a

transformer, 254, 259

Efficiency curve, of high voltage trans-

former, 322

Efficiency curve (continued)
of rotary converter, 437
of synchronous motor, 174

Efficiency formulae for a transformer,
262

Efficiency of a motor, method of

finding, 170

Efficiency of the rotor of an induction

motor, 330
E.M.F. ,

breadth of coil taken into ac-

count, 22, 23

formulae, 14 et seq.
in three phase armature, 81

resultant, 19
Electro-mechanical resonance, 205

Elliptic hysteresis, 245

Equivalent ampere turns,
of motor windings, 361
of separate phase windings, 363
of superposed phase windings, 365

Equivalent net-work, of transformer,

238, 265, 317
of induction motor, 353

Exciters, for alternators, 3, 109
tests of, 109

Exciting current, alternating component
of the, 64

Faraday's cube, 326
Ferranti transformer, 261

Ferraris, induction motor, 327

synchronous motor with alternating
field, 165

Fields, gliding magnetic, 384

produced by a lap winding, 387

produced by a wave winding, 385
Field magnets with inclined pole pieces,

128

Fischer-Hinnen, diagram for alternator,
51

starting device for polyphase motors,
380

Floating-coil transformer, 226

theory of, 234
Fluctuation of the direct voltage of a

converter, 433

Flux, curves, 28
in air-gap, 390
in transformer, 247, 258

Form factor, 16

formulae, 17

star and mesh, 86
Former-wound coils, 328
Foucault's disc, 326

Frankfort-Lauffen, power transmission,
129

Free oscillations of synchronous motors,
185

Frequency, formula for, 4
Fundamental equation for generator and

synchronous motor, 145
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Fundamental diagram for transformer,
257

Gamma functions, 17
Generator and synchronous motor, 137

et seq.

shape of the resultant E.M.F. wave,
141

Generators, double current, 441
armature reaction, 445

heating of, 443

Gliding magnetic fields, 385
effects of rotor current on, 395
influence of the harmonics in, 396
three phase, 385
two phase, 394

Greenhill, A. G., whirling, 209

Guilbert, C. F., formulae for armature

reaction, 47, 76
formulae for the equivalent ampere

turns, 366

Harmonics, in E.M.F. waves, 111

annulling, 126

annulling by inclined pole-pieces, 127

annulling by inclined slots, 127

annulling by special windings, 126
causes of, 122
due to armature reaction, 125
due to slots, 122
in three phase machines, 124
methods of analysing, 112

Heating of rotary converters,

single phase, 420

polyphase, 429

Heaviside, 0., distortionless circuit, 461

reflection, 466

Heyland, A., circle diagram, 346

motor, 371

starting device, 378

High voltage transformers, 321, 323

Hopkinson's coefficient, 29

Hopkinson, B., effects of field dis-

tortion, 190

phase swinging, 180

theory of damping coil, 192

Hospitalier, E., Ondograph, 298

Hysteresis, losses in transformer, 259

elliptic, 245
Hutin and Leblanc, amortisseur, 191

Impedance, synchronous, 55

Inclined, pole pieces, 127, 128, 129

slots, 127
Induction density in transformer core,

310
Induction motors, 327 et seq.

combination, 370

commutator, 413

diagram for constant current, 343

diagram for constant voltage, 345

Induction motors (continued)
driven at speeds greater than the

synchronous speed, 354

efficiency of the rotor, 330
formulae for, 347

high speed and low speed, 358
in cascade, 368
methods of starting, 366, 379
methods of testing, 354
methods of varying the speed, 366
numerical examples, 349, 376

Oerlikon, 357, 358, 359

single phase, 374

slip of, 329

starting, 366, 379
stators connected in four wire star, 396
tests of, 354 et seq.

theory of single phase, 374

theory of three phase, 331 et, seq.
three phase running at half speed,

379
Inductive load, effect on parallel running,

199
on transformer, 264

Inductor machines, 8

principle of, 9
Insulation resistance of line, 458
Intake of synchronous motor, 143

Intensity, electric, between mains, 474
Interference of harmonics, 121
Inverted rotary converters, 440

Irregularities in the speed of alternators,

measuring, 121

Kando, de, starting device, 378
Kirchhoff's method of plotting equi-

potential lines, 82

la Cour, polycyclic system, 478

Lap windings, 32

Larmoyer, test of an induction motor,
356

Latour motor, 414

Leakage, coefficient, 29

factor, of induction motor, 342

factor, of transformer, 227

lag, in transformer, 303

magnetic, in transformer, 295 et seq.

reactance, of transformer, 320

Leblanc, asynchronous generator, 383

Limiting circle, 161

Lines, of equal phase, 159
of equal power, 158

Load, characteristics, 49

factor, 416

Magnetic field of induction motor, 331

Magnetic flux, distribution of, 10

equations of, 27
in slots, 11

refraction of, 13
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Magnetic leakage, in transformers, 295

diagram for transformer with, 301

equations for transformer with, 299

Magnetising current of transformer,
222, 248, 276, 277

Magnetising effects of leading currents,
33

Magnetite, in starting devices, 382

Marchena, de, rotary converters, 431
Maximum power factor of transformer,

230
Maximum power transmitted, 457
Mesh, and star voltage waves of alter-

nators, 83
connection of three phase trans-

formers, 273
effect on output of alternators, 69
to mesh, transforming, 279
to star, transforming, 277

Moment of inertia of rotor, 169

Mordey, W. M., 'V curves, 153

Motors, Arnold, 414

commutator, 398 et seq.

Heyland, 371

induction, 325 et seq.

Latour, 414

polyphase induction, 331

polyphase induction, in single phase
circuits, 373

reactance, 165

repulsion, 410

series, 400

shunt, 409

single phase, 374

synchronous, 131 et seq.
two phase, in single phase circuits, 373

Winter-Eichberg, 415
Motor generators, synchronous, 176
Mutual coefficient of induction motor,

334, 341, 342

Negative booster, 286

Net-work, equivalent, of a transformer,
238, 265 and 317

of an induction motor, 353

Oerlikon Company, Caffaro Generator,
106

Frankfort-Lauffen line, 129

high voltage transformer, 323
inclined pole pieces, 127, 129
induction motors, 357, 358, 359

shape of E.M.F. waves, 87, 88, 89, 129
tests of alternator, 107, 108
tests of exciter, 109
tests of induction motor, 357, 358, 359
tests of synchronous motor, 173, 174
tests of transformer, 322

Ondograph, Hospitalier, 298

Open circuit, E.M.F. formulae, 14 et seq.

characteristic, 23

Optical methods of synchronising, 215

Oscillations, forced, 204

free, 185
in parallel running, 200
of synchronous motors, 185 et seq.

Oscillograph records, of three phase
machines, 93

of two phase machines, 101

Output of generator connected with

synchronous motor, 143

Parallel running, of alternators, 197, 211
of rotary converters, 439

Peaky waves, effect on transformer,
311

Permutators, 446

Perry, J., variable inductance, 117
Phase indicating transformer, 213
Phase swinging, 177 et seq.

period, 179, 189, 202

Polar, pieces, 4

shoes, 4

Polycyclic, distribution, 475

Arnold, 478

Dykes, 476

generator, 480

systems, 478

transformer, 477

Polyphase, alternators, 66 et seq.
currents of different frequencies, 366
motors in single phase circuits, 373

transformers, 267
Positive and negative waves, 463
Power factor, maximum, 230

unity, 159

Power, stations, 416

transmission, 457 et seq.

(see under transmission)

Principle of two reactions, 33

Pupin's resonance method, 114

Eating a transformer, 261

Keactance, leakage of transformers, 320

motors, 165

Keactions, armature, 33

Eeferences, 65, 110, 130, 155, 176, 193,

217, 266, 294, 324, 360, 383, 397,

415, 446, 481
Keflection of waves, 463

Refraction, magnetic, 13

Eegulation of alternators, 59

Eeluctance, formula, 25

air-gap, 63

Eepulsion motor, 411

Eesonance, electro-mechanical, 205
of harmonics, 119

Pupin's method, 114
with transformers, 265

Eesultant, ampere turns of transformer,
259

E.M.F. round a mesh winding, 71
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Reversing the direction of rotation of

an induction motor, 349

Hippies in exciting current, 65

Eoessler, G., tests of a transformer,
307

Rotary condenser, 164

Rotary converters, 416 et seq.

tests, 436 et seq.

Rotor, 3

efficiency, 330

squirrel-cage, 338

torque formulae, 336, 337, 339, 348
Rounded waves, effects on transformer,

313

Routh, E. J., Watt's governor, 205
motion represented by linear equa-

tions, 180
roots of biquadratic equation, 186

Searle, G. F. C., magnetic refraction, 12

Secondary P.D. drop on transformer,
320

Self coefficient of induction motor, 334,
341, 342

Series motor, 399
direct current, 407

Shafts, stresses on, 206
torsional vibrations of, 207

whirling of, 209
Short circuit characteristic, 29

equation to, 54
Shunt motor, 409
Siemens and Halske synchronising

device, 216

Single phase, currents from three phase
machines, 73

motors, theory of, 374

Slip of induction motor, 329
Slots producing harmonics, 122

Speed of alternators, irregularities in,

121

Squirrel-cage rotor, 328, 338

torque, 338

Stability of the running of a syn-
chronous motor, 135

Stanley and Kelly, shunt motor, 410
Star and mesh voltage waves, alternator,

85
three phase transformer, 273

Star connection, effect on output, 69

Starting devices, for polyphase motors,
380

for induction motors, 379, 382
for rotary converters, 439
for single phase motors, 378
for synchronous motors, 166

Stator, 3

currents, 343
induced E.M.F. in winding of, 391
of induction motor, 328

torque, 340

Steinmetz, starting devices, 378, 382

Swinburne, J., efficiency test of motor,
171

rotary condenser, 164

transformer, 260

Synchronising alternators, 211

optical method, 215

phase indicating transformer, 213
three phase, 216
two transformer method, 212
voltmeter method, 214

Synchronous impedance, 55

Synchronous motors, 131 et seq.

advantages of, 175
criterion for stability, 188

driving generators, 176

efficiency of, 148
fundamental equation, 145

limiting value of E.M.F., 147

Oerlikon, 173
on constant potential mains, 162
P.D. at terminals, 139

poly-phase, 167

raising the power factor of, 163

stability of running, 184

starting, 166, 169
variation of excitation, 151 et seq.
variation of load, 149
variation of power factor, 153 et seq.
with alternating field, 165

Tests of, alternator, 107
combination induction motor, 371

exciter, 109
induction motors, 357, 358, 359

Roessler's, 311

synchronous motor, 173
three phase alternator, 91, 107

transformer, 311, 322
two phase alternator, 100

Three phase alternators, 66
armature windings, 67, 68, 76, 77,

79, 80
Caffaro generator, 106
load losses, 109

tests, 91, 107

Torque, bipolar synchronous motor, 134
induction motor, 330, 335

multipolar synchronous motor, 136

polyphase synchronous motor, 136

Transformer, 219 et seq.

analogy with induction motor, 350
circle diagram of, 229

compensating, 289

complete diagram of, 239
condenser load on, 235, 264
connected in four-wire star, 270
connected in three-wire star, 271
constant current, 225, 234
constant potential, 225, 256

copper losses, 256
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Transformer (continued)
core and shell, 224
core losses, 254

diagrams, 229, 302, 319

efficiency of leaky, 306

equivalent net-works, 238, 265, 317

floating coil, 225, 234
formulae for air-core, 231
formulae for commercial, 258, 260,

261, 262

general solution, 241

heating of, 324

high voltage, 321, 323
inductive load on, 235, 264

leakage factor, 227
losses on open circuit, 243
losses under load, 243

magnetising current, 222

magnetising power, 222
maximum power factor, 230
methods of cooling, 321

networks, 238, 265, 317
no magnetic leakage, 238

Oerlikon, 323
P.D. drop on inductive load, 320

power factor, 223

rating of, 261

ratio, 221

secondary voltage formula, 305

shell, 224
three phase, 273, 279, 322

types, 223

Transforming, alternating to direct

currents, 416
three phase currents with single phase

transformers, 268, 281, 282
three phase to single phase, 280
three phase to two phase, 279

Transmission of power, 447 et seq.

approximate formulae, 473

by .direct current, 447

comparison of mesh connections, 456

comparison of single with three phase,
455

comparison of star connections, 456
distortionless circuit, 485

graphical methods, 450, 454, 474
line constants, 451
mains of infinite length, 466
on open circuit, 469

polycyclic systems, 478

pressure rise, 471

Transmission of power (continued)
single phase, 449
three phase, 452

Transverse magnetisation, alternators,
43

double current generators, 445

rotary converters, 422
Two phase, alternator, 97
armature winding, 99
Blondel's test, 100
characteristic curves, 101
current on no-load, 99

oscillograms, 102 et seq.

separate phase windings, 97, 98
short circuit-current, 103

unsymmetrical load, 105

Unity power factor, 159

V-curves of rotary converters, 437
V-curves of synchronous motors, 153
Variable induction transformer, 287

Voltage, mesh and star, 83
ratio of polyphase converters, 426
ratio of single phase converters, 418,

433

ratio, test of the, 431
Voltmeter method of synchronising

alternators, 214

Water cooling for transformers, 323
Wattless characteristics, single phase, 56

polyphase, 90
Wave shape, of current in transformer,

252, 276, 277
effect on parallel running, 199
of E.M.F. required to produce sine

shaped current, 253
of P.D. on closed circuit, 88

Waves, harmonics of E.M.F., 111
methods of analysing, 112
reflection of, 463
star and mesh, 87, 272, 273
transmission of, 463

Whirling of shafts, 209
Willans's law, 195

Windings, lap, 32

wave, 30

Winter-Eichberg motor, 415

Zani, A. P., starting device for poly-

phase motors, 381
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