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A Discussion of Rotating Wave 
Fields for Microwave Applications 

Jose E. Velazco, Member, IEEE, and Peter H. Ceperley 

Abstract-Traveling wave and standing wave fields are central 
to microwave applications. This paper discusses a third category 
of fields: “rotating waves” which, while ocassionally utilized in 
the past, are not commonly used or understood. Rotating waves RESONATORS RESONATOR RF OUTPUT 
are composed of a particular linear combination of standing 
waves, but have field profiles more similar to traveling waves. A 
rotating wave can be pictured as a frozen field rotating in space. 
An analysis is presented of rotating waves in cylindrical cavity 
resonators. The TM1 rotating mode for a cylindrical resonator 
is discussed in some detail. 
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I. INTRODUCTION 

IRCULARLY polarized electromagnetic fields have been C utilized in various applications, for example: circularly 
polarized antennas [l], the gyratron [2], the gyrocon [3], 
the magnicon [4], [ 5 ] ,  a cyclotron converter for microwave 
power to direct current [4], and a self-excited microwave 
oscillator [4]. The gyrocon and magnicon, developed in the 
former Soviet Union by Budker and Karlimer, respectively, 
use circularly polarized fields to achieve spiraling trajectories 
(beam scanning) in electron beams for the generation of 
very high microwave power. Fig. 1 shows a schematic of 
the magnicon, in which three rotating mode cavities are 
utilized. The first two cavities modulate the beam transversely. 
The third cavity extracts energy from the modulated beam 
converting it into several megawatts of RF output power. 

In this paper, we use the term “rotating waves” to describe a 
general class of circularly polarized electromagnetic fields, in 
parallel to the terms “standing waves” and “traveling waves.” 
We start by deriving the basic equations and discussing the 
general properties for rotating waves. Power, energy, and 
angular momentum of rotating modes are then derived. The 
equations for rotating electromagnetic fields in cylindrical 
resonators are presented. Finally, we end with a more de- 
tailed discussion of the TMll0 rotating mode in a cylindrical 
resonator, which has particular appeal for many microwave 
applications. 
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Fig. 1. Magnicon schematic. 

11. RELATIONSHIP BETWEEN ROTATING 
WAVES AND STANDING WAVES 

We start with a standing wave mode in a cylindrical cavity. 
For the sake of illustration, we initially consider only the z 
component of the electric field for a TM mode cavity of radius 
a and length 1. The complete set of electric and magnetic field 
equations will be discussed in Section V. For the z component 
of the electric field, the field representations EL1)(r, 4, z ,  t )  
and EL2)(r, 4, z ,  t )  of two identical (but shifted in the 4 
direction), mathematically independent, degenerate standing 
waves of indices m, n, and p (TMmnp), are given by [8] 

E p ( r ,  4, z .  t )  = EoJ,(k,r) 

EL2+-, 4 2 ,  t )  = EoJm(kr )  
. cos m4 cos k,z cos w t  

. sin m4 cos k,z cos (wt - 6) (1) 

where m = 0, l,2,3,....Jm(kcr) is an mth-order Bessel 
function of the first kind, 

w = c(k,2 + k,2)1’2 (2) 

is the angular frequency, c = ( p ~ ) - ~ / ’  is the speed of light, 
k, = u,,/a is the radial wave number, umn is the nth root 
of J,(u) = O,k, = pr/1 is the z directed wave number, 
and 6 is an arbitrary temporal phase shift between the two 
waves. The index n indicates the number of nodes (zeros) in 
the radial direction, and m gives the azimuthal periodicity of 
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the wave. The last index p gives the periodicity of the wave in 
the z direction. For m = 0, sin m$ is zero everywhere making 
the E L 2 ) ( r , 4 , z , t )  mode zero. Thus, for m = 0, only the 
E:’)(T, 4. z ,  t )  mode exists. It is also important that the index 
m is an integer so that the field at 4 = 27r will smoothly 
blend with that at 4 = 0. 

Linear combinations of the standing wave modes Eil) and 
Et2) for m 2 1 can create rotating modes [6], [7]. For 
instance, adding EL1) and EL2) and setting 6 = 7r/2 yields 
a pure rotating mode 

E,  (T, 4, z ,  t )  = EoJm ( kCr) cos k z z  cos (wt  - m4), 
m = 0 , 1 , 2 , 3 . . .  . ( 3 )  

Subtracting EL1) and EL2) in (1) also results in rotating 
waves which can be expressed by (3) considering now m = 
-1, -2, - 3 ‘ .  . (i.e., the wi in (3) equals -m of ( 1 )  when we 
substract). Thus, in either case (adding or subtracting), (3) rep- 
resents rotating modes for rri = . . . - 3, -2, -1,0, 1 , 2 , 3 .  * * . 
A mode with positive m value will rotate counterclockwise 
(positive 4 direction), while its degenerate counterpart of 
equal magnitude but negative m value will rotate clockwise 
(negative (p direction). An added benefit of ( 3 )  is that it 
assigns only one mode to each combination of m and n, thus 
eliminating the need for the somewhat odd, doubly degenerate 
modes for m 2 1 as in (1). Equation ( 3 )  can also be expressed 
in complex form as 

E z ( r , 4 , z , t )  = EoJ,(Ic,r)cosIc,ze3(”t-”~). (4) 

Equations (3) and (4) represent a pure rotating wave. The 
cos(wt  - m4) term in (3) is similar to a cos(wt  - kx) term 
in a traveling wave, with the only difference being that in 
this case the waves are traveling in the 4 direction, around 
in circles. They appear as traveling waves chasing their tails. 
Fig. 2 shows the z electric wave field in the TM520 mode. 
One can easily see the periodicity in the 4 direction, m = 5 
in this case, and the number of zeros in the radial direction, 
n = 2. The snapshot of a standing wave for this mode would 
not differ from the one of a rotating wave. It is the dynamics of 
the wave crests, as indicated by the arrows on the figure, that 
distinguish these as rotating waves. Standing waves appear to 
vibrate between fixed nodal lines and continually change their 
shape, i.e., have time dependence. A rotating wave, on the 
other hand, has a constant but moving field profile, similar to 
that of a traveling wave. Nevertheless, rotating waves do have 
discrete resonant frequencies with integer indices [m, n,  and p 
in (2)]  similar to that of standing waves. Thus, rotating waves 
have properties of both standing and traveling waves. 

In order to calculate the velocity with which this wave 
travels in the (p direction, we need to follow a feature, such as 
a node or a maximum, as the wave propagates. Such a feature 
is defined by a particular value C of the argument of the last 
cos in (3) or value of the argument of the exponential of (4), 
Le., C = wt - m4 = 0,27r, 47r, etc., for the wave peaks, or 
7r/2,37r/2, etc., for the nodes, and 7r, 37r, etc., for the valleys. 
In general, for any particular feature 

w t - m d = C  ( 5 )  

Fig. 2. Surface plot of E,  in rotating TMsm mode. 

where C is a constant. After applying derivatives to (5 ) ,  we 
can obtain 

m d 4  = w d t  (6) 

which can be rearranged to yield 

(7) dt m 
This expression indicates that the angular velocity of the 
rotating wave wrot d 4 / d t  equals the RF angular frequency 
w divided by the azimuthal index m. For example, for m = 4 ,  
the wave would be rotating at an angular velocity equal to a 
quarter of the RF angular frequency, wrot = w / 4 .  This is of 
special importance in high-frequency microwave applications. 
In devices like the magnicon, in order to obtain synchro- 
nism between fields and particles, the cyclotron frequency 
of the electrons 0, is matched to the rotating frequency of 
the cavities’ fields, i.e., Q, = 2wrOt for the input cavities, 
R, = wrOt for the output cavity. The cyclotron frequency 
is directly dependent on the axial magnetic field B, applied 
on the particles, R, = e B , / m o  [9]. Here e and m, are the 
electron charge and mass, respectively. For high-frequency 
applications, very strong magnetic field systems would be 
necessary, which besides becoming large and expensive, could 
lead to potential problems such as overheating or beam pinch- 
off, among others. For a higher order mode cavity (Iml > l), 
the rotating frequency of the fields will be smaller than w 
by a factor of llm, hence relaxing the need for a strong 
axial magnetic field. Other potential applications may be 
encountered that also utilize the fact that while the cavity is 
resonating at w ,  its fields are rotating at w / m .  

d 4  - w - -  . 

111. ENERGY, POWER, AND ANGULAR 
MOMENTUM IN ROTATING WAVES 

In an electromagnetic rotating wave resonance, the field 
components rotate in the 4 direction. Moreover, the electric 
and magnetic fields, whose time and 4 dependence are of the 
form ej(wt-m4), are “in phase” both in time and in position. 
This will be explained in more detail in Section V-A. This 
results in there being a 4 directed time averaged Poynting 
vector P4 produced by these fields and given by 

1 
2 

P+ = - R e ( E  x H * ) +  
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m O  
n 
1 2.405 
2 5.520 
3 8.654 
4 11.792 

where E and H are the complex representation of the electric 
and magnetic field components transverse to the direction of 
motion 4.  

A characteristic parameter of rotational motion is the angu- 
lar momentum L, . The z directed angular momentum density 
1, equals the cylindrical radius T times the linear momentum 
density Pq5/c2 [IO]-[12], where c is the free-space phase 
velocity of the electromagnetic radiation. If we integrate 1, 
over the volume of the resonator, we obtain an expression for 
the angular momentum L, as follows: 

1 2 3 

3.832 5.136 6.380 
7.016 8.417 9.761 
10.173 11.620 13.015 
13.324 14.796 16.223 

Lz = -$ Re ( E  x N*)4r dV, 

I m l  o 1 1 1  2 The Maxwell equation jwE = c2pV x H yields 

x H )  x H*)4]rdV. 

Substituting specific components of the vectors in cylindrical 
coordinates, we have 

3 

Utilizing the fact that the 4 dependence of the fields is of the 
form e- jm4,  we have for (9) 

1 L,  = 'J [5mlH12+ 1 Z R e ( j V ( r H 4 ) . H * )  1 dV. (10) 

w v  

Replacing UB = (p/4) J, IHI2 dV for the magnetic energy 
[ 131 and expanding the term on the right, we have 

(11) 

where the foremost right expression is zero from the Maxwell 
equation pV . H = 0. Now applying the divergence theorem 
on the expression at the center, we obtain 

L,  = 2-UB m + k R e ( j  TH@* . dS) .  (12) 
W 2w 

\ " d 

=O 

The expression on the right is zero by the fact that H at the 
resonator wall is perpendicular to the wall surface vector S. 

Finally, observing that the total magnetic energy UB com- 
prises half the total field energy U,  we obtain a final expression 
for the angular momentum 

mU L, = 7. 
It is interesting to note that while the fields rotate at 

wrot = w/m, i.e., rotate slower for larger m values, the angular 
momentum L, , which is proportional to m, increases for larger 
m values. 

TABLE I 
THE nth RWTS OF J?,,(u) 

TABLE I1 
THE nth RWTS OF .JA,(u) 

In the output cavity of the magnicon, most of the gyrating 
beam energy is given to the cavity fields which result in an 
associated loss in the electrons' momentum. Clearly, by the 
conservation of momentum, the fields must gain an equivalent 
amount (L, must increase accordingly) which in turn translates 
into the enhancement of the fields energy U. 

Iv. RESONANT FREQUENCIES OF ROTATING WAVES 

From the derivations in Section 11, we see that the resonant 
frequencies of the rotating modes are same as the resonant 
frequencies of standing waves modes [14], given in (2) ,  

(14) Wmnp = .[kc" + IC,2]1'2. 

Substituting the expression for IC, and IC,, we obtain 

Similarly, the resonant frequencies for the TE,,, mode are 
given by 

where uLn is the nth root of the .Jk(u) 5 dJm(u)/du = 0. 
Tables I and I1 show the nth roots of Jm(u)  and J&(u), the 
mth- order Bessel functions of the first kind, for different 
values of m and n for the various rotating modes of waves 
in a cylindrical guide. The frequency is a function of the 
index numbers n and p ,  and the absolute value of m. For 
ImJ 2 1, the +m and -m modes are degenerate, as mentioned 
in Section 11. 

v. ROTATPJG WAVE FIELDS IN CYLINDRICAL RESONATORS 

The standard equations for the electromagnetic standing 
wave modes TMnLnp in cylindrical resonators are [8] 

Ez(r ,  4 ,  z ,  t )  = EoJm(IC,r) cos IC,z 

. cos (m4) cos w t  (17) 

-?I- 
_- 
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. cos nu$ cos wt (18) 

. sin m4 cos wt (19) 

. sin m4 sin wt 
WEEO 

k ,  

(20) 

(21) 

(22) 

H+(r,  4, z ,  t )  = -Jk(kcr) cos k,z cos m4 sin wt 

Hz(r ,  4, z ,  t )  = 0. 

By shifting phases (both in the angle 4 and in time), and 
adding these as we did in Section 11, we find the complete elec- 
tromagnetic fields for the rotating wave modes in a TM,,, 
cylindrical resonator: 

E , ( T , ~ , Z , ~ )  = E o J , ( k , r ) ~ ~ ~ k , z c o ~ ( w t  - V L ~ )  (23) 
Eo P7r E,(T, 4, z ,  t )  = - - ( - )J&(k,r)  sin k,z 
kc 1 

. cos (wt  - m#J) (24) 

. sin (wt  - m4) (25) 

. cos (wt  - m4) (26) 

(27) 

(28) 

where m = . . .  - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 , . . . ,  and J L  E 

( d / d b - )  [ J ,  (kc.>] = [(m/k,r)J,  ( k ~ )  - Jm+1 ( k , ~ ) ]  [ 151. A 
discussion of the characteristics of and the difference between 
the standing wave and rotating wave representation of these 
fields is presented below for the TM110 mode case. 

WCEO 
k ,  

H 4 ( r , 4 , z , t )  = ---Jk(k,r)cosk,zsin(wt - m4) 
Hz(r ,  4 , z ,  t )  = 0. 

A. T M l l o  Cylindrical Resonator Case 

representation (1 7)-(22) reduces to 
For a T M l l o  mode cylindrical cavity, the standing wave 

and the rotating representation (23)-(28) to 

E2(T,4,t)  =EoJ1(k , r )cos(wt  - 4) 
WCEO 

H T ( T , + , t )  = -JJ , (k ,r)cos(wt  k,2r - 

where Ji = [ ( J 1 ( k c r ) / k , ~ )  - Jz (kcr ) ] .  The plots of J ,  are 
shown in Fig. 3 for m = 0,1,2.  

BESSEL FUNCTIONS 
1 .o 
0.9 
0.8 

n c 0.7 
0 0.6 
5 0.5 

E 0.4 
0 3  
0.2 

v1 0.1 
g 0.0 - a -0.1 > -0.2 

-0.3 
-0.4 
-0.5 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 :4.0 4.5 5.0 

kc r 3.832 
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Fig. 3. Bessel function plots. 

For standing waves, the fields (29)-(3 1) cycle between being 
totally magnetic and being totally electric; so that when the 
magnetic field is maximum, the electric field is zero, and vice 
versa. The magnetic lines wrap around in closed curves in 
both halves of the cavity, reinforcing each other at the center 
as shown in Fig. 4(a). The electric field lines go perpendicular 
(to the plane of the magnetic field lines) through the center of 
the magnetic field curves where the magnetic field is minimum. 
For rotating waves (32)-(34), the electric and magnetic fields 
are both always present (instead of cycling), and the field 
pattems of each are unchanging, but rotating in the 4 direction. 
The profile of the electric field lines of a rotating wave is 
the same as that in the standing wave case. Also, the profile 
of the magnetic field lines is the same as in the standing 
wave case. However, the electric and magnetic field profiles 
have a different relative orientation in the rotating wave case 
as compared to the standing wave case. As shown in Fig. 
4(b), the electric field profile is rotated by 90" relative to the 
magnetic field profile when compared to the standing wave 
case shown in Fig. 4(a). Considering fields off the resonator 
axis (at some radial coordinate value T ) ,  in the standing wave 
case, the electric field peaks at a different 4 coordinate value 
than the magnetic field. In the rotating wave case, they peak at 
the same 4 coordinate value and same time, creating a strong 
circulating Poynting vector P+ = (1/2) Re ( E ,  x H;)  with 
the associated angular momentum discussed in Section 111. 
In contrast, in the standing wave case, the Poynting vector 
averaged over an RF cycle is everywhere zero. Fig. 5(a) shows 
a snapshot surface plot for the rotating electric field E,  of 
the T M l l o  cavity. From (32) and (33) we see that the radial 
magnetic field component H ,  is proportional to E,, so its 
snapshot surface plot would look the same as Fig. 5(a). Note 
also that, off-axis, the fields E, and H, being proportional to 
each other, peak simultaneously (in time and position) as they 
rotate, creating a rotating Poynting vector as stated above. 
As is well known, in a cavity at resonance (in a standing 
wave mode), the stored energy U is constant and oscillates 
between electric and magnetic forms [16]. That is to say, 
because the electric and magnetic fields in the standing wave 
case are 90" out of phase, the electric energy UE a /El2 
peaks when the magnetic energy U ,  a JHI2 is zero, and 
vice versa. 

I 
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MAGNETIC 
FIELD 

(a) 

MAGNETIC 

(b) 

Fig. 4. (a) Electromagnetic field lines for standing wave T1\Illo mode in a 
cylindrical resonator. (b) Electromagnetic field lines for rotating wave ThIl10 
mode. 

In a rotating wave mode, the fields rotate in the 4 direction, 
keeping their amplitude constant as they travel. Therefore, the 
total electric energy and the magnetic energy will both be 
constant in time and each equal to half the total stored energy: 

1 
2 

U E ( t )  = U H ( t )  = - U ( t ) .  

To demonstrate the previous statement, we calculate the elec- 
tric stored energy of a T M l l o  rotating wave resonator as 
follows: 

= ‘/i/’%n(Eo.J1(kcT) 2 0 0  COS (4 -d )1 ’TdTd4dz (35 )  

and the magnetic stored energy 

(b) 

Fig. 5.  (a) Surface plot of electric field El for rotating TMllo mode cavity. 
A similar plot of H,. will have exactly the same shape. (b) Surface plot of total 
H field ( ,/=) for a rotating ThIl10 mode in a cylindrical resonator. 

+ -J;(kCr)sin(4 - wt) I‘I r d r d d d z .  (36) 

As expected, (35) and (36) give the same answer 1171 

(37) 
1 
4 

UE = U H  = - T t a 2 i ~ ; ( U 1 1 ) ~ ; .  

Thus, in the rotating wave case, the electric and magnetic 
stored energies are identical to each other, and are constant or 
time independent. 

In both standing wave and rotating wave modes, the co- 
efficient of the electric field EO can be found from (37). 
Substituting U = P;,Q/w [18], we have 

where Q is the quality factor of the cavity and Pi, is the power 
fed to the cavity. So by (32), the electric field magnitude at any 
T value is EoJl (kc.) ,  and the maximum value in the cavity 
occurs at k,r = 1.841 and equals 0.58230. The magnetic field 
magnitude then is given by (33) and (34). Thus, for a given 
cavity, (38) allows us to determine the peak (and ever-present 
but moving) electric and magnetic field magnitudes inside of 
the cavity. 

We calculate the resonant frequency of the TMllo modes by 
examining the boundary conditions. The boundary conditions 
for the electric field component require that E, = 0 for 
T = a. Table I yields for m = n = 1,211~ = 3.832 (i.e., 
for k,r = 3.832, J l ( k , r )  = 0 as shown in Fig. 3). Equation 
(14) gives the resonant frequency 

C 
(39) 

U l l  
~ 1 1 0  C- = 3.832-. 

a a 
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TM1 i o  ROTATING 
MODE CAVITY 

electron 
# beam 

Modulated7 : 4- 

beam - -.- -.- :, V 

W 
Fig. 6. Snapshot of an electron beam going through a TnIllu cavity. 

Equation (7) indicates that the fields within this cavity will 
rotate at the angular velocity of wrot = dd,/dt = w .  For 
example, for a = 18 cm, the resonant frequency of the cavity 
would be w = 6.3 . lo9 rad/s (f z 1 GHz) and the rotating 
angular velocity of the wave would also be dd,/dt = w = 
6.3 . lo9 rad/s. 

HZ + H: for the TMllo 
cavity, is shown in Fig. 5(b). It is this rotating magnetic 
field that is commonly utilized in the transverse modulation 
of particle beams (gyrocon, magnicon). Near the axis (kcr  << 
l ) , J l ( k c r )  z k c r / 2  and J2(kc7-) M ( ( / ~ ~ 7 - ) ~ / 8 ) .  Letting 
H ,  = H ,  cos d, - H4 sin d, and Hy = H ,  sin d, + H4 cos d, ,  the 
magnetic field in rectangular coordinates can be expressed as 

The magnetic field H = r- 

sin wt .  coswt H - - H -- EO EO 
- (2CP) - ( 2 c p )  

At any point on-axis, the magnetic vector H is constant in 
amplitude, but rotates in the d, direction at the RF angu- 
lar frequency w .  The particles entering the cavity will then 
encounter this constant amplitude magnetic field rotating in 
the d, direction. Because the H field is constant, all particles 
(of velocity u) will be deflected by the same constant force 
e p ( v  x H ) ;  however, because the B field rotates in time, 
particles entering the cavity at different times will be deflected 
in different directions. Thus, upon exiting the cavity, the 
particles form a spiraling beam shown in Fig. 6. 

VI. CONCLUSIONS 
Rotating waves are neither standing waves nor traveling 

waves but have the field profile similar to a d, directed traveling 
wave and the discrete resonant frequencies of standing waves. 
An analysis of electromagnetic rotating waves, including their 
field dependence on standing waves, frequencies, energy, and 
power, has been presented in this paper for cylindrical cavities. 
The concepts of angular momentum, resonant frequencies, 
and electromagnetic fields in different types of rotating wave 
modes have been studied. A number of interesting and unique 
properties of rotating waves were discussed, including their 
constant electric and magnetic field energies. We mentioned 
a range of current uses for rotating waves in this paper; 
however, it is hoped that rotating electromagnetic waves, once 
better understood, may be utilized in an even wider range of 
applications. 
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